
CMP SUM VER. 1.0/1.1
 2/20/97

SOFTWARE USER’S MANUAL
FOR THE DII COE

COMMON MESSAGE PROCESSOR
VERSION 1.0/1.1

Solaris 2.5.1 and HP-UX 10.10

February 20, 1997

Prepared by:
Intermetrics, Inc.
615 Hope Road

Eatontown, NJ 07724

Prepared for:
Program Manager

Common Hardware Software
Ft. Monmouth, NJ 07703

CMP SUM VER. 1.0/1.1
2/20/97

i

TABLE OF CONTENTS

SECTION TITLE PAGE
1 SCOPE .. 1

1.1 Identification .. 1
1.2 System Overview.. 1
1.2.1 Common Operating Environment.......................... 1
1.2.1.1 Common Hardware and Software 1
1.2.1.2 Four-Layer System Model 2
1.2.2 Common Message Processor 2
1.2.2.1 Inbound Message Processing 2
1.2.2.2 Outbound Message Processing 2
1.2.2.3 Message Processing Support Functions................. 3
1.2.2.4 The CMP Overview.. 3

2 APPLICABLE DOCUMENTS .. 4
2.1 Government Documents 4
2.1.1 Government Standards ... 4
2.1.2 Service-Unique Message Standards 4
2.1.3 Other Government Documents 5
2.2 Non-Government Documents 5

3 INBOUND MESSAGE PROCESSING... 6
3.1 Common Message Processor 6
3.2 Overview.. 6
3.2 Section Overview ... 6
3.3 Execution Procedures ... 7
3.3.1 Message Processing.. 7
3.3.1.1 USMTF Message Processing 7
3.3.1.2 Variable Message Format 7
3.3.1.3 The Requirement for MTF

 Message Processing.. 8
3.3.2 CMP: A Central Message

 Processing Service.. 8
3.3.3 CMP: A Set of Integrated Message

 Processing Components...................................... 9
3.3.4 CMP: A Set of Stand Alone

 Message Processing Tools 11
3.4 CMP Architecture and

 Execution Model .. 11
3.4.1 Major Components of the CMP 11

CMP SUM VER. 1.0/1.1
2/20/97

ii

3.4.2 Operation of the CMP .. 12
3.4.2.1 Startup/Initialization Phase 12
3.4.2.2 Message Processing Phase 12
3.4.2.3 Shutdown/Termination Phase 13
3.4.2.4 Interactive Processing... 13
3.5 Message Processor ... 15
3.5.1 Interactive Capabilities Applications 15
3.5.1.1 Examining Messages... 15
3.5.2 Interactive Queries.. 16
3.5.3 Correcting an Invalid Message.............................. 16
3.6 Query Language Reference................................... 18
3.6.1 Queries... 19
3.6.1.1 The SELECT Clause .. 19
3.6.1.2 The FORMAT Clause... 24
3.6.1.3 The FROM Clause.. 29
3.6.1.4 The WHERE Clause... 31
3.6.1.5 The WITHIN Clause .. 32
3.6.1.6 The VALIDATE Clause 34
3.6.2 Shells.. 36
3.6.2.1 Syntax Declaration ... 36
3.6.2.2 Scope ... 37
3.6.2.3 Shell Output ... 37
3.6.2.4 Output Directive... 39
3.7 User Interface Reference....................................... 40
3.7.1 Starting the User Interface 40
3.7.2 Controlling the User Interface............................... 40
3.7.2.1 Mouse Buttons ... 40
3.7.2.2 Point and Click Commands................................... 41
3.7.2.3 Push Buttons .. 41
3.7.3 Functions Available through the User Interface 42
3.7.3.1 The Message Journal Window 42
3.7.3.2 The Queries Window.. 44
3.7.3.3 The Query Reports Window 46
3.7.3.4 The Routing Window ... 46
3.7.3.5 The Log Window ... 48
3.7.3.6 The Message Error Log Window.......................... 48
3.8 The Application Program Interface 48
3.8.1 Client Configuration Files 48
3.8.1.1 Query Definitions ... 50
3.8.1.2 Shell Definitions ... 50
3.8.1.3 Routing Definitions... 50
3.8.1.4 Message Definitions.. 51

CMP SUM VER. 1.0/1.1
2/20/97

iii

3.8.2 The Output Protocol... 51
3.8.2.1 The Data Routing Mechanism............................... 51
3.8.2.2 The Data Transfer Format 52
3.8.3 The Input Protocol ... 54
3.8.3.1 The Message Input Mechanism............................. 54
3.8.3.2 The Message Input Format 55
3.9 Error Messages... 56
3.10 Query Language Syntax.. 62
3.11 Shell Syntax.. 64

4 OUTBOUND MESSAGE PROCESSING ... 64
4.1 Overview.. 64
4.2 How to Use this Section 65
4.2.1 Typographical Conventions 65
4.2.2 Active Functions... 66
4.2.3 Contents of this Section.. 66
4.3 What is the Message Generation Module?............. 66
4.3.1 Message Generation Module System Limits.......... 66
4.4 What is New About the Message Generation Module 67
4.5 What to Do Next .. 67
4.6 References and Standards 69
4.7 Graphical User Interface 69
4.7.1 Overview.. 69
4.7.2 Getting Started ... 70
4.7.3 Choosing Commands from Menus 71
4.7.4 Working with Windows .. 75
4.7.5 Using Scroll Bars.. 77
4.7.6 Paned Windows.. 78
4.7.7 Using Dialog Boxes and Controls 78
4.8 Main Displays and Help System............................ 82
4.8.1 Overview of Main Displays and Help System........ 82
4.8.2 Main Displays... 82
4.8.3 Using the On Line Help System 86
4.9 Tailoring Addresses .. 91
4.9.1 Overview.. 91
4.9.2 Working with Addresses....................................... 92
4.9.3 Working with Drafters and Releasers 96
4.10 Tutorial - Preparing and Editing a Message........... 97
4.10.1 Overview.. 97
4.10.2 Creating a New Message 98
4.10.3 Editing Field Contents .. 98
4.10.4 Editing Sets .. 103

CMP SUM VER. 1.0/1.1
2/20/97

iv

4.10.5 Saving Messages .. 105
4.10.6 Spelling Checker... 105
4.10.7 Validating Messages and Error Correction............ 106
4.10.8 Previewing and Printing Messages 108
4.10.9 Filling in the Header.. 109
4.10.10 Editing an Existing Message 111
4.10.11 Views ... 112
4.10.12 Cutting, Copying, Deleting, and Pasting................ 113
4.10.13 Deleting and Appending Fields.............................. 114
4.10.14 Restoring a Message... 115
4.10.15 SunSPARCstation .. 115

5 OTHER MESSAGE FUNCTIONS.. 115
5.1 Scope ... 115
5.2 Normalization Software.. 116
5.2.1 Identification .. 116
5.2.2 Purpose .. 116
5.3 Automatic Message Generation Using MDLMAP. 116
5.3.1 Introduction.. 116
5.3.1.1 Text Formats .. 117
5.3.1.2 Text Format Translation 118
5.3.1.3 An Overview of MDLMAP 118
5.3.1.4 Contents of this Section.. 118
5.3.2 The Map Definition Language 119
5.3.2.1 Composition of an MDL Program......................... 119
5.3.2.2 Lexical Declarations ... 122
5.3.2.3 Record Declarations ... 124
5.3.2.4 Input Grammar... 126
5.3.2.5 Output Expressions .. 130
5.3.3 Command-Level Interface to MDLMAP............... 146
5.3.3.1 Arguments to MDLMAP...................................... 146
5.3.3.2 Exit Status Returned by MDLMAP 147
5.3.4 An MDL Tutorial ... 148
5.3.4.1 Automatic Message Generation 148
5.3.4.2 A Typical Task: Generating TACELINT Messages 148
5.4 Bit-Oriented Message (BOM) to Character-

 Oriented Message (COM) Translator................. 157
5.4.1 Identification .. 158
5.4.2 System Overview.. 158
5.4.3 Document Overview... 158
5.4.4 Reference Documents ... 158
5.4.5 Installation.. 158

CMP SUM VER. 1.0/1.1
2/20/97

v

5.4.5.1 Installation of the Message Format Data
Definition Database .. 158

5.4.5.2 Installation of the BOM/COM Translator.............. 159
5.4.6 Execution Procedures ... 159
5.4.6.1 Initialization.. 159
5.4.6.2 User Inputs... 159
5.4.6.3 System Inputs ... 159
5.4.6.4 Termination.. 159
5.4.6.5 Outputs .. 159
5.4.7 Error Messages... 160
5.4.8 "Customization of the BOM/COM

 Translator" ... 160
5.4.9 "Example Usage of the BOM/COM Translator".... 160
5.5 Message Journaling Server 160
5.5.1 Identification .. 160
5.5.2 Section Overview ... 160
5.5.3 Reference Documents ... 160
5.5.4 Installation Procedure.. 160
5.6 MTF Stand Alone Tools 160
5.6.1 The MTFVAL Tool.. 161
5.6.2 The MTFXTRACT Tool 161
5.6.3 The MTFREPORT Tool....................................... 162

6 NOTES.. 163
6.1 Acronym List.. 163
6.2 Glossary ... 166
6.3 List of Definitions... 168

Appendix A Installation Guidance
1 Introduction A - 1
2 Possible Configurations ... A - 1

2.1 Layout of distinct CMP Configurations................. A - 1
2.2 Installation Scenarios.. A - 2
2.3 COE Run-time Dependencies................................ A - 4

3.0 Registration and Query ... A - 5
3.1 Registration of Client Applications........................ A - 5
3.2 Writing the Query for ISUM................................. A - 6
3.2.1 Writing the Routing Table Entry for ISUM........... A - 9
3.3 Registering ISUM with the User Interface A - 10
3.4 Registering ISUM with a Client

Configuration File... A - 14
3.5 Routing Several Message

Types to a Single Application A - 15

CMP SUM VER. 1.0/1.1
2/20/97

vi

3.6 Routing a Single Message Type to
Several Applications ... A - 16

4.0 Installation, Configuration, and Operation .. A - 16
4.1 Installation.. A - 16
4.1.1 CMP Installation... A - 17
4.1.2 Execution ... A - 17
4.1.3 Modifying the UNIX Kernel A - 18
4.2 Choose Names and Locations A - 19
4.2.1 Create User and Group Accounts A - 20
4.3 Configuration ... A - 20
4.4 Operation ... A - 22
4.4.1 Initializing the Processor....................................... A - 22
4.4.2 Saving the System State.. A - 22
4.4.3 Shutting Down the Processor................................ A - 23
4.4.4 Restarting the Processor A - 23
4.4.5 Killing Processes... A - 23

5.0 Normalization Installation and Initialization.. A - 23
5.1 User Inputs... A - 24
5.2 System Inputs ... A - 25
5.3 Termination.. A - 25
5.4 Restart.. A - 25
5.5 Outputs .. A - 26
5.6 Error Messages... A - 26
5.7 Customization of the Datafiles A - 29
5.8 Datafile Format... A - 30

6.0 Installation of the DCE and Journaling ... A - 31
6.1 Installation of the Journaling Software A - 31
6.2 Execution Procedures ... A - 31
6.2.1 Initialization.. A - 31
6.2.2 Execution of Server .. A - 31
6.2.3 Termination.. A - 32
6.3 Customization of the Journaling Server

Configuration File... A - 32
6.3.1 Configuring the Journaling Server......................... A - 32
6.4 Backup Log File ... A - 35
6.5 Journaling Server Database Tables........................ A - 36
6.5.1 Journaling Server Data Structures......................... A - 38
6.6 Journaling Server APIs ... A - 45
6.7 Journaling Server Filtering.................................... A - 56
6.8 Example Client Text Program of the

Journaling Server.. A - 58
Appendix B Message Data Tables

CMP SUM VER. 1.0/1.1
2/20/97

vii

1 Scope ... B - 1
1.1 Message Generation Data Tables B - 1
1.2 Message Parser Data Tables B - 1

CMP SUM VER. 1.0/1.1
2/20/97

viii

TABLE OF CONTENTS (Continued)

LIST OF FIGURES

FIGURE TITLE PAGE
3-1 Sample LOCATOR Message.. 20
3-2 Description of LOCATOR Message Format... 213
3-3 Sample ATOCONF Message.. 236
3-4 An Error Report for an ATOCONF Message ... 268
3-5 Columnar Set in Report Format.. 30
5-1 Records and Fields in a USMTF Message... 117
5-2 A Sample MDL Program ... 122
5-3 Input Text Divided Into Fields and Records.. 124
5-4 Input Text After Record Identification.. 126
5-5 Input Text After Parser ... 128
5-6 Parsing Action Reports from MDLMAP .. 129
5-7 MDL Operators and Their Precedence ... 133
5-8 An Abridged Description of the TACELINT Message................................ 151

LIST OF TABLES

TABLE TITLE PAGE
3-1 Relation of Validation Levels and Results... 35
3-2 Summary of Scope Output ... 38
3-3 Effect of Newline Characters in Scope.. 38

CMP SUM VER. 1.0/1.1
2/20/97

1

COMMON MESSAGE PROCESSOR
SOFTWARE USER'S MANUAL

1 SCOPE

1.1 IDENTIFICATION

This user's manual provides operating procedures for the Defense Information Infrastructure (DII)
Common Operating Environment (COE) message processing functional area module. It
addresses requirements covering message receipt, logging, routing, storage, retrieval, generation,
coordination, release, and delivery services. The COE message processing functional area
software product common name is the Common Message Processor (CMP).

1.2 SYSTEM OVERVIEW

1.2.1 Common Operating Environment

The COE is intended for use by all Department of Defense (DoD) Automated Information
Systems (AIS). The COE provides the infrastructure on which functional applications reside.
The COE consists of an integrated architecture made up of hardware and software that provides
standard support for both common and tailorable sets of functional applications software.

1.2.1.1 Common Hardware and Software.

C2 applications will be hosted on platforms defined by the DoD as Common Hardware (HW) and
Software (SW) (CHS). These CHS-specified platforms are suites of processors and commercial
software (e.g., operating systems, network operating systems, distributed computing software,
display drivers and graphics packages, etc.). CHS provides much of the SW capability needed to
support C2 applications. Support software needs not met by CHS software products are
addressed through the implementation of a custom set of C2 support SW tools and are referred to
as the Common Operating Environment. COE software capabilities will be developed for the
following platforms (a platform is a pairing of computing hardware and an Operating System):

a. SUN Microsystems (SUN) SPARC using the SOLARIS 2.4 operating system
b. SUN Microsystems SPARC using the SOLARIS 2.51 operating system
c. Hewlett-Packard (HP) 9000 series using HP UNIX 9.07 (RISC) operating system.

CMP SUM VER. 1.0/1.1
2/20/97

2

d. Hewlett-Packard (HP) 9000 series using HP UNIX 10.10 (RISC) operating system.
e. Windows 3.1x and Windows NT operating systems.

1.2.1.2 Four-Layer System Model.

The DoD standard system architecture is a Four-Layer Model. Layer 1, Hardware, contains CHS
processors and communications and hardware devices. Layer 2, System Software, contains the
operating system and associated commercial software products (e.g., Database Management
System [DBMS] X/Motif, etc.). Layer 3, Support Software, contains the software elements for
18 of the 19 COE Technical Architecture for Information Management (TAFIM) architectures
(i.e., COE modules). Layer 4, Applications, contains common and/or mission-specific C2
applications. The COE area also includes a Developer's Kit.

1.2.2 Common Message Processor

The Common Message Processor (CMP) consists of objects and public operations that support
the handling of incoming and outgoing message traffic. The CMP provides the COE message
handler functionality in separate modules and as an integrated message handling system. The
Message Processing module consists of stand alone software modules that form the core message
handling functions of message receipt, logging, routing, storage, retrieval, generation,
coordination, release, and delivery services. In addition, the CMP offers a CMP User Interface
(CUI) from which various capabilities of the COE message handler may be accessed. This manual
covers the Inbound Message Processing module in Section 3, and the Message Generation
module (outbound processing) in Section 4. Section 5 contains software modules that provide
additional functionality, such as operational message journal and data normalization.

1.2.2.1 Inbound Message Processing.

The Message Parser Module is a generic, table driven Message Text Format (MTF) processor
that accepts formatted and unformatted messages from a communications front end, validates
message format and field content, then performs data extraction as directed by the user. The
Message Processor shall process all message types that conform to the MTF standard rules for
message structure and content. The CMP extracts data of interest for MTF like messages and
sends the extracted data to user-specified applications/processes. The parser is not considered a
user application but serves as a general-purpose input interface for applications that need
information from messages. Parser components may be employed as independent message
processing tools performing a single function. One tool may construct message reports while
another tool validates messages; still another would be used to extract information from
messages.

CMP SUM VER. 1.0/1.1
2/20/97

3

1.2.2.2 Outbound Message Processing.

The message generation module aids in the preparation and editing of formatted text messages
such as the USMTF. The system shall accommodate all messages conforming to MTF definition
rules. The system must also support use of plain language address retrieval and posting to a
message template through use of a user definable and maintainable table and/or use of the Defense
Messaging System (DMS) X.500 global addressing scheme when available.

1.2.2.3 Message Processing Support Functions.

Normalization software converts message data from incoming messages into a format usable by
the host application software. It also converts data from the format used by the host application
software or databases into that of a MTF message format for outbound messages.

Typically, automatic filling of selected data fields is the first step in the message preparation
process. An operator edits the partial message, inserting information not available as an
automated field, and reviews the message before it is released. It is also possible to arrange a fully
automatic message-generation approach, where messages are created and transmitted without any
operator intervention. The CMP software module shall provide for automatic generation of
formatted messages from information extracted from a database or submitted by a process.
Automatic message generation means the ability to create and transmit a message without
operator intervention.

1.2.2.4 The CMP Overview.

The CUI provides the user with a graphical interface from which various capabilities of the COE
message handler functional area may be accessed. The CUI provides the user with a Distributed
Computing Environment (DCE) based Journaling client that can be utilized with the Journaling
server to provide a distributed method of monitoring all incoming and outgoing messages.
Additionally, the CUI provides the user with the capability to create/edit messages interactively by
accessing the CMP Message Generation/Edit capability. The CUI also provides a means to filter
the incoming and outgoing messages using a dynamically updated directory through the CUI.
This filtering capability allows the users to focus attention on specific messages, or types of
messages, based on message attributes.

The CUI is the user's graphical interface for the management of inbound and outbound messages.
 The user is provided with a windows for the display and manipulation of incoming and outgoing
messages. Using this interface, the user has point and click capabilities for creating, editing, and
previewing all messages. There are other advanced features, e.g., the Auto-Fill functionality for
message generation, the Send function for passing the message to the communications
module/system, and a message header generation function.

CMP SUM VER. 1.0/1.1
2/20/97

4

The CUI works alongside the Outbound Message Generator (OMG), Inbound Message Processor
(IMP), and Journaling software systems; hence any software that the OMG, IMP, and Journaling
require is indirectly required by the CUI. The Journaling system requires that that DCE software
be up and running and have an area defined for retention of data (such as a flat file or data base).
The Journaling system is implemented as a DCE server while the CUI is implemented as a DCE
client and uses DCE for callbacks in its graphical interface to the OMG.

2 APPLICABLE DOCUMENTS

2.1 GOVERNMENT DOCUMENTS

The following documents form a part of this user's manual to the extent specified herein. In the
event of a conflict between the documents referenced herein and the contents of this manual, the
contents of this manual shall be considered a superseding requirement.

2.1.1 Government Standards

The following Government standards are referenced in this document:

a. DoD 5200.28-STD, Department of Defense Trusted Computer System Evaluation
Criteria

b. MIL-STD-498, Software Development and Documentation.
c. Interim MIL-STD-6040, U.S. Message Text Formatting Program, Description of U.S.

Message Text Formatting Program, 1 October 1995 Implementation

2.1.2 Service-Unique Message Standards

The following service-unique message standards are referenced in this document:

a. JANAP 128, AUTODIN Operating Procedures, March 1983
b. DOI 103, DSSCS Operating Instructions
c. ACP-126, GENSER Operating Procedures
d. ACP-127, NATO Operating Procedures
e. DD173, Joint Message Form, January 1979
f. Allied Communications Publication 123 (ACP 123)
g. Allied Communications Publication 126M (ACP 126M)

CMP SUM VER. 1.0/1.1
2/20/97

5

h. Intelligence and Electronic Warfare (IEW) Character-Oriented Message Catalog
(COMCAT)

i. United States Signals Intelligence Directive (USSID)
j. Navy Unique Message Standards
k. Air Force Unique Message Standard
l. Marine Corps Unique Message Standard (i.e., Marine Tactical System [MTS])
m. Variable Message Format (VMF) Technical Interface Design Plan for Task Force

XXI, 31 July 1995.
n. Army Unique Message Standard.

2.1.3 Other Government Documents

The following Government documents are referenced in this document:

a. Software Requirements Specification for the Joint Message Analysis Processing
System, 14 September 1994

b. Joint Message Analysis Processing System (JMAPS) User's Manual
c. Joint Message Analysis Processing System (JMAPS) Programmer's Manual
d. Joint Message Preparation System (JMPS) User's Manual
e. User Interface Specification for the Global Command and Control System (GCCS)
f. ACCS-A1-302-001B, Common ATCCS Support Software (CASS) Segment

Specification (CSS) Draft, 14 November 1994
g. ACCS-A3-500-004, Army Command and Control System Message Catalog, 28 May

1993
h. ACCS-A3-500-005, Message Format Definition Database Specification, 21 July 1993
i. LL-500-04-03, GCCS Common Operating Environment Baseline, DISA, November

1994.

2.2 NON-GOVERNMENT DOCUMENTS

The following non-Government documents are referenced in this document:

a. UNIX applicable documents
b. SUN SOLARIS Version 2.3 or later
c. SUN Operating System Version 4.1.2 or later
d. HP UNIX Operating System Version 8.0 or later

CMP SUM VER. 1.0/1.1
2/20/97

6

e. Open Systems Foundation (OSF) Distributed Computing Environment (DCE)
f. TRANSARC Distributed Computing Environment (DCE)
f. Cherinka, Robert D. and Collins, W.J., "The Joint Message Analysis Processing

System (JMAPS) Development Environment User Guide," Draft, MITRE
Corporation, Bedford, Massachusetts

g. Cherinka, Robert D. and Riffe, Annette S.H., "The Joint Message Analysis Processing
System (JMAPS) Version 3.3, Release Notes," D075-LL-075, MITRE Corporation,
Bedford, Massachusetts

h. Cherinka, Robert D.; Malloy, Mary A.; and Renner, Dr. Scott A., "The Joint Message
Analysis Processing System (JMAPS) Users Manual, Version 3.3," WP 94B0000076,
MITRE Corporation, Bedford, Massachusetts

i. Miller, Dr. Robert W. and Scarano, Mr. James G., "The Design and Implementation of
the Phase III Joint Message Analysis Processing System (JMAPS)," MTR
92B0000097, March 1993, MITRE Corporation, Bedford, Massachusetts

j. Riffe, Annette S.H., "JMAPS Enhancements to Enable the Processing of U.S. Navy
OTH Gold Message Text Formats," WP 93B0000135, May 1993, MITRE
Corporation, Bedford, Massachusetts.

3 INBOUND MESSAGE PROCESSING
(NOTE: SECTION 3 IS NOT FOR DII END USER)

3.1 COMMON MESSAGE PROCESSOR OVERVIEW

This section describes the procedures to use the stand alone Message Processor module of the
CMP. The Message Processor is a set of computer programs designed to process MTF like
messages. The CMP's processor receives messages from the communication module and extracts
the data of interest, sending it to user applications such as databases, applications, and report
generators. The processor is not part of these applications and does not include them; rather, it
serves as a general purpose input interface for applications that need information from messages.

3.2 SECTION OVERVIEW

This document is a user's guide for the CMP Inbound Message Processor functions. It explains
how to install and perform inbound message processing.

Knowledge of some basic computer functions and the UNIX operating system is assumed (i.e.,
how to give commands to the shell, view and edit a file, change directories, etc.). The on-site

CMP SUM VER. 1.0/1.1
2/20/97

7

system administrator must be familiar with several details of UNIX administration, including
building and installing a new kernel, creating user accounts and user groups, extracting files from
tape, etc.

Familiarity with the MTF standards is assumed. MIL-STD-6040 provides an introduction
regarding this area.

This section contains several examples of how to use the Common Message Processor. These
examples contain a few special terms and a few special type styles, as explained in the following
list:

a. Standard type represents computer output.
b. Bold type represents something that must be typed exactly. For example, if prompted

to type mtfx file.1, all 11 characters must be typed exactly as printed in the manual,
including the space between mtfx and file.1.

c. Italic type is used for emphasis or to introduce a new term. It may also represent a
placeholder for something that must be provided. For example, if asked to type
filename, then the actual name of a file instead of the eight characters printed in the
manual should be typed.

d. CAPITALS represent the name of a key on the keyboard; for example, CTRL, SHIFT,
ENTER, etc.

e. KEY1-KEY2 means to hold down the first key while pressing the second key. For
example, if asked to press CTRL-Z, hold down the CTRL key, press the Z key, then
release both keys.

3.3 EXECUTION PROCEDURES

3.3.1 Message Processing

The CMP processor is made up of modular, general purpose message processing software that
extracts data from received messages. Its design allows it to be easily interfaced with existing and
developing systems. These systems can use the processor to satisfy message processing and
preparation requirements instead of developing an internal, independent capability. Each system
needs only to know the information that it must extract from incoming messages; this module will
handle the extraction and the validation of the data extracted.

The CMP processor may be employed in several different ways, depending on the needs of the
user. It may be operated as a central message processor, serving a number of client systems on a
network or function as an integrated component of a system. Finally, the processor may be
employed as a set of independent tools.

CMP SUM VER. 1.0/1.1
2/20/97

8

3.3.1.1 USMTF Message Processing.

The USMTF standard is defined in MIL-STD-6040. It specifies over 200 text message formats
for joint and tactical information exchange. These Message Text Format (MTF) messages are
designed to be human readable and machine processable.

3.3.1.2 Variable Message Format.

The Variable Message Format (VMF) standard is defined in the Technical Interface Design Plan
(TIDP) for Task Force XXI, dated 31 July 1995. It specifies message formats for Bit Oriented
Messages (BOM) for information exchange. These messages are designed to be machine
processable and are not human readable.

The CMP contains software capable of converting a VMF (BOM) message into a Character
oriented Message (COM) resembling a MTF message and processes the message as if it were
transmitted as COM. The Marine Corps Tactical System (MTS) messages are a special subset of
the VMF message suite and are a sub-set of the VMF messages processed by the CMP.

3.3.1.3 The Requirement for MTF Message Processing.

The Joint Chiefs of Staff (JCS) require the use of MTF messages in all record message traffic
between services in joint and combined operations.

It is clear that many existing and future Automated Information Systems (AIS), to include C3I
systems, must handle MTF messages to satisfy interoperability requirements and exchange of
command and control data for machine processing and rapid integration of bulk data into existing
data bases. These systems will have to construct outgoing MTF messages in order to supply
information to other systems, and will have to receive and process incoming MTF messages in
order to obtain information. MTF message processing means a great deal more than simply
routing messages to the proper destinations. Automation requires extraction of specific data from
messages for internal use. AIS systems must be able to extract the specific data elements they
require from the messages they receive. If the wrong elements are extracted, the
operation/task(s) will fail. (For example, a mission-planning system that mistakenly extracts a
refueling rendezvous instead of a target location will not produce a valid plan.) To avoid these
mistakes, it is necessary to determine the correspondence between the message text and the
structure of the message format. This is known as parsing the message, which ensures that a
system receives valid and correct data.

3.3.2 CMP: A Central Message Processing Service

The CMP may be employed as a central message processor, providing services to many different
client programs across a local area network. In this arrangement, the clients need never handle

CMP SUM VER. 1.0/1.1
2/20/97

9

the complete message. Instead, they use the processor as a "black box" interface that
preprocesses incoming messages and constructs outgoing messages on their behalf.

The CMP and the client programs may execute on the same machine, or on separate machines on
the same network. For example, a communications processor may handle the actual transmission
and receipt of messages from other locations while a message handler routes or sends a copy of
each message to local operators and systems. Also, a message release authority may make the
final decision to transfer an outgoing message to the communications processor for transmission.
It is possible to define parsing requirements in real time but normally before operation begins each
client system will specify the information it requires from incoming messages. For example, one
system might request the time and location fields for each contact reported in each TACELINT
message. Another system might request the details of refueling missions tasked to a particular
wing from ATOCONF messages.

During operations, incoming messages are received by the communications processor. The local
message router or message handler sends a copy of each message to the message parser. (If there
is no local message router, the parser can be connected directly to the communications processor,
and can also route entire messages to local operators or systems.) The CMP processes each
message as it arrive, and sends to each client the parts of the message the client has asked to
receive. The client systems never have to read the incoming messages. Instead, they read just the
fields that they require, broken out of the message and placed in a system specified input format.
A client can use this input to modify a situation display, prepare a report, update a database, etc.
If desired, the input supplied by the parser may be reviewed by an analyst before being processed
by the client system.

The CMP can test each message for conformance with current message standards. If the content
or structure of a message deviates from the standard, then the integrity of its information is in
question. Client applications can use this capability as a partial validation of their input.

The CMP can store messages it receives. Users can then write interactive queries to the message
contained in that repository, expressing requests such as "show me all the messages that assigned
refueling missions to this wing in the last two days." The Query Language used is based on
Structured Query Language (SQL), the de facto standard language used by many commercial
databases.

Outgoing messages may be generated in one of two ways. An operator of a client system may
invoke the interactive message editor and manually construct the message (see Message
Generation, paragraph 4), or the client program may generate the message data and send it to the
parser (see MDLMAP, section 5), which transforms the data into the message text format. A
combined approach is possible, in which the message is partially formed by the processor and then
manually completed using the message editor. The constructed messages may be reviewed by a
message release authority, an automated or human interactive process, before they are actually
transferred to the communications center for transmission. A major advantage of this modular
architecture is that the client programs do not have to include their own message processing

CMP SUM VER. 1.0/1.1
2/20/97

10

component. This makes the client programs easier to design, build, and maintain. There are also
efficiency advantages: because it acts as a central message processor, each arriving message is
processed only once, instead of once by each client program. The CMP makes a further
improvement in efficiency by doing only the processing required to satisfy the combined
requirements of its clients; if no client needs information from a particular message type, then
those messages are not further processed.

3.3.3 CMP: A Set of Integrated Message Processing Components

The CMP may be employed as a set of message processing components that are integrated into
some other system. The CMP offers an integrated Message Handling System with a CMP user
Interface described in Section 4.9. It uses the CMP as one of its components to perform message
processing tasks. The difference between this and the central server arrangement is primarily one
of organization and control. In the previous scenario, the parser received all incoming messages
and then forwarded information extracted from these messages to its clients. In this scenario, the
parent system receives incoming messages, and then uses the CMP module as a sub process to
validate these messages and extract information from them.

This employment of the CMP is appropriate when the parent system has message processing
requirements that cannot be completely satisfied by the CMP. In this case, the parent system must
directly exchange messages with the local message router, instead of indirectly via the CMP. The
primary advantage of using the CMP is retained because the parent system does not have to re-
implement the capabilities of the software. However, if several systems on the network adopt this
approach, then the efficiency advantage of a central message processor is lost.

CMP SUM VER. 1.0/1.1
2/20/97

11

3.3.4 CMP: A Set of Stand Alone Message Processing Tools

The CMP may be employed as a set of independent message processing tools. Each tool
performs a single function: one tool constructs messages, another validates messages, a third
extracts information from messages, etc. These tools are typically used directly by an application,
but can also be configured to run as a background process.

This employment of all modules of the CMP is appropriate when its full functionality is not
required. For example, if the only requirement is to manually prepare outgoing messages, then
there is no need for the data extraction and routing capabilities. These simple requirements are
frequently encountered on small, single-user personal computers or workstations. The
independent tools are suited to this environment.

The message editor component is available as a stand-alone software module (see Section 4,
Message Generation).

3.4 CMP ARCHITECTURE AND EXECUTION MODEL

The CMP message-processing server is composed of several subsystems that cooperate to
validate incoming messages, extract data from messages, and route extracted data to external,
client systems. This section describes the architecture of the CMP server, and then traces the
passage of an input message through the system. (The stand-alone CMP tools are not a part of
the server and are described in Section 3.10.)

3.4.1 Major Components of the CMP

The message processing server has three major interfaces. They are the Message Input,
Application Interface, and Operational Message Journal.

a. The Message Input/Output (MIO) is the initial point of entry for incoming messages.
The MIO reads new messages that have been placed in an input directory by an
external agent.

b. The Applications Interface (AI) manages the interface between the parser and the
client applications. The AI receives messages, performs the validation and data
extraction required by the client systems, and then sends the extracted information to
the clients.

c. The Operational Message Journal stores messages received/generated by the
system/user.

CMP SUM VER. 1.0/1.1
2/20/97

12

Currently, the UI allows an authorized user to modify the system configuration. It also allows
interactive access to the validation, correction, and data extraction capabilities. The UI
communicates with the message processing server by accessing the data storage repository
components through shared memory.

The Message Generation components also execute as a separate process. They support the
composition, editing, validation, and correction of messages (see paragraph 4).

3.4.2 Operation of the CMP

The CMP server may execute in the background as a daemon process. The server goes through
three distinct phases of execution: startup, message processing, and termination. In addition to
background message processing, the CMP also responds to interactive user requests through the
user interface.

3.4.2.1 Startup/Initialization Phase.

When the CMP is started, it first reads a master configuration file called the .MAPSconfig file.
This file tells the CMP where to look for new messages, where to store old messages, where to
find other configuration information, etc. The CMP then searches the configuration directory for
files with a name ending in the four characters .ccf; these are client configuration files, which
describe the information required by client applications. At this point, the CMP is completely
initialized and ready to receive incoming messages (see Section 3.9.2 for more information about
the .MAPSconfig file, and Section 3.8.1 for more about the client configuration files).

This initial startup is called the coldstart process. It is also possible to restart the CMP from a
state file created during a previous execution; this is called a warmstart. During a warmstart, the
CMP ignores the client configuration files; configuration information comes from the saved state
file instead.

3.4.2.2 Message Processing Phase.

The CMP expects new messages to arrive as files in a directory called the mio directory. The
location of this directory is specified in the .MAPSconfig file. The MIO software repeatedly scans
this directory, searching for new files with a filename ending in the three characters .in. These
files contain messages or parts of messages. When the MIO discovers a new message file, it
removes the file from the mio directory, and then sends the file contents to the parser for further
processing.

The parser module determines how each message should be handled. There are several
possibilities, as follows:

CMP SUM VER. 1.0/1.1
2/20/97

13

a. If the file does not contain a recognizable message, then it is dumped to a directory
containing invalid input files, and this event is recorded in the audit log.

b. If the file is one part of a sectioned message, then it is retained until all sections arrive
or the user directs that processing of available sections is to occur.

c. If the file contains an entire message, or is the last missing piece of a sectioned
message, then the entire message is forwarded to the AI for further processing.

The parser module validates and parses the message as it executes the queries. The parser does
the minimum amount of parsing required; that is, if no query references a particular part of the
message, then that part of the message will not be parsed. This is known as query-directed
parsing. Each client specifies the amount of message validation it requires, and the CMP does the
minimum amount of validation required.

After handling all of the routing table entries for the new message, the CMP consults the
application Trigger Table ATTable to determine whether this message should be saved in the
operational journal. The messages in the journal can be inspected, queried, and corrected
interactively through the CUI.

At this point, the processing of this message is complete. Control returns to the MIO subsystem,
which repeats the process by looking for a new message file.

3.4.2.3 Shutdown/Termination Phase.

When the CMP is told to terminate, it first writes a snapshot file describing the current state. This
file includes the messages in the message journal, the contents of the ATTable, and, in general,
everything needed to resume execution of the server in its present state. This state file will be
read by the CMP during a subsequent warmstart operation.

3.4.2.4 Interactive Processing.

While the in-bound message processor is executing in the background, the UI permits operator
access to the messages saved in the operational message journal and to the client configuration
information in the ATTables. The UI permits an operator to perform the following actions:

a. List the messages saved in the journal
b. View the text of any message saved in the journal
c. View an error report listing all validation errors in a message
d. Correct and edit a message
e. Resubmit a message, causing the CMP to process it as if it had newly arrived
f. View the output of a query executed on every message in the journal

CMP SUM VER. 1.0/1.1
2/20/97

14

g. Allows an authorized user to archive, purge, or selectively remove messages from the
message database

h. Edit the client configuration information in ATTable.

It is possible to: (1) run the message processing server without ever running the UI; (2) start and
stop the UI several times while the server is in the message processing phase of execution; or, (3)
run several UI processes concurrently, allowing multiple operators to access the (single) message-
processing server.

CMP SUM VER. 1.0/1.1
2/20/97

15

3.5 MESSAGE PROCESSOR

This section contains examples of the processor in use, describing a hypothetical client application
and showing how to specify the information it requires. It also gives examples of the interactive
operations available through the user interface. This section also includes a brief overview of the
query language, client configuration files, and the processor-to-client interface. (For more
specific registration information and procedures see Appendix A.)

3.5.1 Interactive Capabilities

This section covers some tasks that can be performed with the current CMP UI: examining
messages in the journal, running interactive queries, and correcting messages which contain
errors.

3.5.1.1 Examining Messages.

The processor can be configured to save certain types of messages in the message journal. These
messages can be listed and examined through the Message Journal window in the UI. Messages
are identified by their type (the message ID field), the date-time group, and the originator. These
items are included in the header lines sent with each query output to the client applications. For
example, the header lines in Figure 3-9 indicate that the information in the query output was
extracted from the message identified by the triple "TACELINT, 011200Z APR 93, RHDIAAA."
 To find this message, we look for these strings in the display. We can then examine the text of
the messages saved. To examine the TACELINT message mentioned above, we first select it by
clicking on the third line in the display. Next, we press the View button. This creates the
Message Journal (VIEW) window. When we are finished looking at this message, we press the
Cancel button to dismiss the window.

We can also examine an "exploded" version of a message, in which each field and each coded
value is labeled with a descriptive string. This is called report format. While messages in this
format are much longer than the cryptic versions, they are also much easier to understand. The
report format allows users to read a message even when they are not familiar with the message
format.

To examine our sample TACELINT message in report format, we first select it as before. Then
we press the Report button.

CMP SUM VER. 1.0/1.1
2/20/97

16

The message journal allows us to selectively display messages, choosing by message type, date-
time group, and originator. We can also save, print, and delete messages here. These features are
covered in Section 3.7.3.

3.5.2 Interactive Queries. ((Not currently implemented))

With the user interface we can compose a query and execute it against the messages
journal/repository "on the fly." It is not necessary to change the configuration files. This
interactive query facility permits us to treat the messages in the journal as a message database.
We can write useful queries to extract information from a single message, or from the entire
message database. This section will discuss both types of interactive query.

Like many ATOCONF messages, this message is several thousand lines long and contains tasking
for many different units. Suppose we want to review the portion of the message which contains
tasking for a particular unit; for example, the 4th Fighter Wing. To do this manually, we must
review the entire message, because a unit's tasks do not have to be grouped in a single place.
Instead, we will use the processor to extract the particular segments. To do this, we must first
compose and then execute a new query.

To compose a query, we follow the same steps outlined in Section 3.5.1.2. The name of our new
query is "4fw." The text of this query is as follows:

SELECT TASKUNIT.1,[MSNDAT]
FROM MSGID="ATOCONF"
WHERE TASKUNIT.1="4FW"
FORMAT TEXT;

There are a few new features of the query language present in this query:

a. [MSNDAT] selects the entire MSNDAT segment, which contains all the information
for a particular air mission (see Section 3.6.1.1).

b. By default, interactive queries are executed on every message which meets the FROM
criteria in the database. The FROM clause means that this query will only be executed
on ATOCONF messages (see Section 3.6.1.3).

c. FORMAT TEXT means that the query will output the exact text of the selected sets
and segments, complete with field separators (see Section 3.6.1.2).

When we finish adding the new query, we will see it appear in the Queries window. Instead of
closing this window, we now select the 4fw query and then press the Execute button. This will
execute the query on the only message in the repository which matches the FROM clause. (If
there were two or more ATOCONF messages, we would need to write a longer FROM clause to

CMP SUM VER. 1.0/1.1
2/20/97

17

pick messages by type and date, and possible originator.) The query output appears in the Query
Result (VIEW) window.

3.5.3 Correcting an Invalid Message.

Client systems may specify that they wish to be notified if the data sent by the processor was
extracted from an invalid message. The processor sends this notification in the .ERRORS line in
the output wrapper. There are many things a client system might do when it receives data
extracted from an invalid message; for example, it could accept it or silently discard it. A client
system might request that the invalid message be corrected and reprocessed. This section shows
how to use the UI to do this.

Suppose the processor has been configured with the isum.ccf file, see Appendix A, and an invalid
TACELINT message arrives. It will execute the isum-01 query and send the results to ISUM.
Because this query includes a VALIDATE ALL clause, the processor will report any validation
error occurring anywhere in the message. The data sent to the ISUM program will appear as
follows:

MSGID TACELINT
FROM RHDIAAA
TO DHDIAZZ/SYJ
DTG011422Z APR 93
ERRORS 3 MESSAGE,EXTRACTED
"24492","911945Z","LS:435244N0751836W","SPRUANCE","CUSHING","F","SHIP"
END

ISUM sees a non-zero value in the ERRORS line in the output wrapper and recognizes that this
data comes from an invalid message. ISUM will not update its database with this information.
Instead, ISUM asks its operator to correct and reprocess the invalid message. ISUM uses the
values from the other lines in the output wrapper to identify the message, telling the operator to
look for "TACELINT, 011422Z APR93, RHDIAAA" in the message repository.

Acting now as the ISUM operator, we switch to the UI, choose Windows Message Journal to
open the window, and select the line matching the message specified by ISUM. Next, we press
the Errors button. This creates the window which contains a listing of the validation errors found
in the message.

The error report indicates a problem with the second field of the SOI set. To discover the
meaning of the SOI.2 field, we examine the message in report format (by pressing the Report
button). The following represents some of the resulting output:

CMP SUM VER. 1.0/1.1
2/20/97

18

SOI
TARGET SIGNAL IDENTIFIER:: 24492
DETECTION TIME:: 911945Z
TIME LOST:: 011959Z
ELINT NOTATION:: EHIZZ
EMITTER DESIGNATION:: LOUDMOUTH
AIR DEFENSE DISTRICT:: 787

The SOI.2 field is the "detection time" field. The value of this field tells up that this signal was
first detected at 1945 hours on the 91st of the month. The processor recognizes that this is not a
valid date value, and therefore reported an error for this field.

With a little detective work, we can guess the correct value for the SOI.2 field. The "time lost"
field tells that the signal was lost at 1959 hours on the first of the month. It is very likely that this
signal was detected and lost on the same day. The first character of SOI.2 is probably a
typographical error; it should be a "0" instead of a "9."

To change the SOI.2 field, we press the Correct button. This sends the selected message to the
message editor. The parser displays the text of the message, replacing the incorrect field with
underscore characters to show where we must make our correction. Section 4 describes the
editor window and how to correct messages.

Using the CMP Message Generator, enter the correct contents ("011945Z") into the SET SOI,
field 2.

When we choose the Exit menu selection, the windows will vanish, returning us to the Message
Journal window. To verify that the message has been corrected, press the View button or the
Errors button. The next step is to reprocess the message. To do this, we press the Submit
button. The processor then processes the corrected message as if it had just been received. It
again executes the isum-01 query and sends the results to ISUM. This time, the data sent to
ISUM appears as follows:

MSGID TACELINT
FROM RHDIAAA
TO DHDIAZZ/SYJ
DTG 011422Z APR 93
ERRORS 0
"24492","011945Z","LS:435244N0751836W","SPRUANCE","CUSHING","F","SHIP"
END

CMP SUM VER. 1.0/1.1
2/20/97

19

ISUM will accept this data, since the output wrapper indicates that no validation errors were
found in the source message.

3.6 QUERY LANGUAGE REFERENCE

The query language is a language for extracting information from messages and/or files/data
bases. Queries written in SQL specify the information to be retrieved and the output format used
to view the retrieved data. A query specific enough to identify a single message, in which case it
acts as an information filter. A query can also be applied to a collection of messages in the
message journal and acts as a database retrieval query.

SQL is a well known data retrieval language for relational databases. SQL has been extended to
deal with structured messages, instead of totally flat relational tables. A design goal of the
language is that anyone who is familiar with SQL and with the general structure of messages
should find queries easy to formulate.

This section describes the query language. The first part describes the structure of queries and the
meaning of the keywords in the language. The second part describes an extension to SQL
queries, called shells, which permits concatenation of multiple queries and substitution of query
output strings into a text template. Shells provide both a simple report generator capability and a
way to generate SQL statements to update a database with information extracted by a query.

3.6.1 Queries

There are three keywords used in SQL:

a. A select clause is used to specify the particular data elements to be retrieved from one
or more messages.

b. A from clause is used to describe the message domain; that is, those messages from
which data is to be extracted.

c. A where clause is used to restrict both the message domain and the data retrieved by
specifying conditions that must be satisfied by the message contents.

CMP has three additional keywords not found in SQL. These were added to handle the structural
features found in operational messages but not found in relational databases.

a. A format clause specifies the output form of the extracted data items
b. A within clause restricts data extraction to the fields contained in the specified

message segments.
c. A validate clause specifies the amount of message validation that is to be performed

during data retrieval.

CMP SUM VER. 1.0/1.1
2/20/97

20

A query contains one or more clauses, each beginning with one of these six keywords. Every
query ends with a semicolon. Queries are not sensitive to the difference between uppercase and
lowercase letters.

The rest of this section discusses the meanings of the clauses in a query.

3.6.1.1 The SELECT Clause.

The SELECT clause describes the data elements that will be retrieved by the query. Every query
must have exactly one SELECT clause. This clause consists of a list of data element specifiers.
These specifiers correspond to parts of the message format: segments, sets, and fields. There is a
data element specifier for every element. As we describe these specifiers, we will refer to the
sample LOCATOR message in Figure 3-1.

OPER/BIG FLOATER//
MSGID/LOCATOR/RHDITAC/0401004/APR//
REF/A/ORDER/CTF122/011630ZAPR93/010200/NOTAL/AAS/AAT/AAZ//
REF/Z/DOC/AF-II/312359Z/3112009/PASEP/ABC/ADD//
QUEWORD/RED//
SUB/075/GRYPHON/LR12/CERT/UR/NUC/DELTA II/HIGH/PHT//
TMPOS/010735Z/4223N08640W/170T/12KTS/REGAIN/SURF/VISUAL//
TMPOS/010855Z/4224N08644W/175T/12KTS/HOLDING/SURF/VISUAL//
SUB/076/RED OCTOBER/LR12/CERT/UR/NUC/DELTA II/HIGH/PHT//
TMPOS/010822Z/4324N08144W/140T/15KTS/REGAIN/SURF/VISUAL//
NAVAL/076/USS HARLAN COUNTY/LR02/CL-MOD KASHIN/DD/UR/NPH//
BRNG/010645Z/4259N07548W/165T//
TMPOS/010635Z/4228N08633W/180T/14KTS/LOST/AIR/ACSONO//
ATTACK/MK46/UNSUCCESSFUL/VISUAL/5NM/-/180T//
TMPOS/010640Z/4228N08635W/180T/14KTS/GAINED/AIR/ACSONO//

Figure 3-1. Sample LOCATOR Message

A set is denoted by its unique set identifier. The specifier "MSGID," applied to the message in
Figure 3-1, would retrieve the entire set, producing the following result:

CMP SUM VER. 1.0/1.1
2/20/97

21

MSGID/LOCATOR/RHDITAC/0401004/APR//

A set specifier retrieves every matching set from the message domain. The specifier "TMPOS"
applied to the example message would retrieve the following five sets:

TMPOS/010735Z/4223N08640W/170T/12KTS/REGAIN/SURF/VISUAL//
TMPOS/010855Z/4224N08644W/175T/12KTS/HOLDING/SURF/VISUAL//
TMPOS/010822Z/4324N08144W/140T/15KTS/REGAIN/SURF/VISUAL//
TMPOS/010635Z/4228N08633W/180T/14KTS/LOST/AIR/ACSONO//
TMPOS/010640Z/4228N08635W/180T/14KTS/GAINED/AIR/ACSONO//

A set can also be denoted by its presentation number, or pnum. A presentation number is an
integer value assigned to each set during message analysis, indicating the set's position in the
structure of the message type. A set specifier using a pnum is written as an integer in parenthesis;
for example, "(31)." This kind of set specifier retrieves only those sets in the corresponding
position. Pnums help to resolve ambiguities that arise when the same set appears in different
positions in a message type.

To determine the presentation number for a particular set in a message, you must consult the
entry for the message in MIL-STD-6040, Catalog of USMTFs. The entries show the sequence of
sets in the message type. The presentation number for each set is given in the column labeled
"SEQ." Figure 3-3 shows part of the entry for the LOCATOR message type. The TMPOS set
appears 21 times in this message type, at presentation numbers 19, 31, 34, 36, etc. Suppose that
analysis of the LOCATOR message in Figure 3-2 shows that the five TMPOS sets in the message
occurred at pnums 31, 34, 31, 55, and 60, respectively. Then the set specifier "(31)" would
retrieve only the first and third TMPOS sets. We can assign numbers to the fields in a set,
numbering sequentially from left to right. A particular field is denoted by the name of the set in
which it appears, a period ("."), and the ordinal number of the field within that set. For example,
when applied to the sample LOCATOR message:

MSGID.1 retrieves LOCATOR
MSGID.2 retrieves RHDITAC
MSGID.3 retrieves 0401004
MSGID.4 retrieves APR

Note that the equivalent specifiers for these four fields using presentation numbers instead of set
identifiers would be "(3).1," "(3).2," "(3).3," and "(3).4," since Figure 3-17 indicates that the
MSGID set is assigned presentation number 3.

CMP SUM VER. 1.0/1.1
2/20/97

22

As with set specifiers, a field specifier retrieves every matching field in the message domain. For
example, the specifier "TMPOS.5" retrieves five fields: "REGAIN," "HOLDING," "REGAIN,"
"LOST," and "GAINED."

Certain fields are repeatable; that is, they may appear an arbitrary number of times in a set. If
such a field is specified, each repetition is retrieved. For example, the seventh field in the REF set
is repeatable. The specifier for this field, "REF.7," retrieves five data items: "AAS," "AAT,"
"AAZ," "ABC," and "ADD."

A segment is denoted by enclosing the identifier of its first set in square brackets. The specifier
"[ATTACK]" retrieves every segment beginning with an ATTACK set. When applied to the
example message, it retrieves:

ATTACK/MK46/UNSUCCESSFUL/VISUAL/5NM/-/180T//

TMPOS/010640Z/4228N08635W/180T/14KTS/GAINED/AIR/ACSONO//
A segment specifier also retrieves every matching segment in the message domain. In our
example, the specifier "[SUB]" retrieves the following two segments, containing five sets in all:

SUB/075/GRYPHON/LR12/CERT/UR/NUC/DELTA II/HIGH/PHT//
TMPOS/010735Z/4223N08640W/170T/12KTS/REGAIN/SURF/VISUAL//
TMPOS/010855Z/4224N08644W/175T/12KTS/HOLDING/SURF/VISUAL//
SUB/076/RED OCTOBER/LR12/CERT/UR/NUC/DELTA II/HIGH/PHT//
TMPOS/010822Z/4324N08144W/140T/15KTS/REGAIN/SURF/VISUAL//

Certain segments can be initialized with any one of a choice of two or more sets; these are called
alternate initial sets. It is important to remember that a special interpretation of segment
specifiers applies in such cases.

a. If the segment is referenced using the initial set having the lowest presentation number
from among the alternates, then the segment specifier retrieves all occurrences of that
segment, regardless of which alternate initial set was actually used.

b. If the segment is referenced using any initial set other than the one with the lowest
pnum, then the segment specifier retrieves only those occurrences of the segment
which used that specific alternate initial set.

The example LOCATOR message does not contain any segments with alternate initial sets.

Segment specifiers may be used to restrict the domain to which a set or field specifier is applied.
To refer to TMPOS sets only when they appear in NAVAL segments, we write
"[NAVAL]TMPOS." This retrieves just two of the five TMPOS sets in the message:

CMP SUM VER. 1.0/1.1
2/20/97

23

TMPOS/010635Z/4228N08633W/180T/14KTS/LOST/AIR/ACSONO//

TMPOS/010640Z/4228N08635W/180T/14KTS/GAINED/AIR/ACSONO//
We can also specify the first field in TMPOS sets in NAVAL segments by writing
"[NAVAL]TMPOS.1." This retrieves "010635Z" and "010640Z." Once again, pnums can be used
instead of set identifiers to formulate segment specifiers. Figure 3-2 shows that the first field in
TMPOS sets in the ATTACK segment that are nested within the SUB segment can be denoted
[24][35]TMPOS.1 by using the corresponding set pnums.

CMP SUM VER. 1.0/1.1
2/20/97

24

(U) INDEX REFERENCE NUMBER :C325 STATUS : AGREEDDATE : 01-DEC-1985
MTF IDENTIFIER :LOCATOR
MESSAGE TEXT FORMAT NAME :MARITIME FORCE LOCATOR
FUNCTION OR PURPOSE :THE LOCATOR IS USED TO REPORT SURFACE OR

 SUBSURFACE, AIR, OR SPECIAL INTEREST UNITS
 OPERATING IN THE MARITIME ENVIRONMENT

SPONSORS :
RELATED DOCUMENTS :
MESSAGE TEXT FORMAT :

 SEG RPT OCC SETID SEQ FIELD OCCURRENCE SET FORMAT NAME
 (C) EXER 1 /M/O// EXERCISE IDENTIFICATION

(O) OPER 2 /M/O/O/O// OPERATION IDENTIFICATION DATA
(M) MSGID 3 /M/M/O/O/O/O// MESSAGE IDENTIFICATION

*(O) REF 4 /M/M/M/M/O/O/*O// REFERENCE
(C) AMPN 5 /M// AMPLIFICATION
(C) NARR 6 /M// NARRATIVE INFORMATION

[Some sets have been omitted]

 C (M) SUB 24 /M/M/M/M/M/M/O/O/O/O/O// SUBMARINE CONTACT
 [(O) ASSOC 25 /*M// ASSOCIATION
 [(C) ELLIPSE 26 /M/M/M/M// ELLIPSE
 [(C) CIRC 27 /M/*// CIRCULAR AREA
 [(C) AREA 28 /*M// AREA
 [(C) TIMEVENT 29 /M/M/M/M/M/O/O// TIME INFORMATION
 [* (O) BRNG 30 /M/M/M/O/O/O// BEARING
 [* (C) TMPOS 31 /M/M/M/M/M/M/O/O/O// TIME AND POSITION
 [* (O) RELPO 32 /M/M/M/M/M/O/O// RELATIVE TO OWN POSITION
 [* (O) REACT 33 /M/M/M/M/M/O// REACTION
 [(C) TMPOS 34 /M/M/M/M/M/M/O/O/O// TIME AND POSITION
 [O (M) ATTACK 35 /M/M/O/O/O/O// ATTACK
 [[(M) TMPOS 36 /M/M/M/M/M/M/O/O/O// TIME AND POSITION
 [END OF SEGMENT

[Some sets have been omitted]

DECL /M// MESSAGE DOWNGRADING OR
DECLASSIFICATION DATA

Figure 3-2. Description of LOCATOR Message Format

The asterisk character is a wildcard that can replace a field number or set identifier in a specifier.
 It has the following meanings:

CMP SUM VER. 1.0/1.1
2/20/97

25

* every set
[*]TMPOS the TMPOS sets in every segment
[SUB]* every set in a SUB segment (equivalent:[SUB])
TMPOS.* every field in a TMPOS set (equivalent: TMPOS)

There is one special function that can be applied to data elements: the NAME function. When
applied to a message or segment, the NAME function yields the set identifier of the initial set of
the message or segment enclosed in square brackets. When applied to a set, NAME produces its
set identifier. When applied to a field, the NAME function returns the FFIRN/FUDN that
describes the field content's format. For example, referring to the sample message:

a. NAME([ATTACK]) or NAME([20]) is [ATTACK]
b. NAME(TMPOS) or NAME(21) is TMPOS
c. NAME(TMPOS.1) or NAME(21.1) is 1131/2

The NAME function is primarily used when one wishes to determine which of several alternate
formats has been used for a particular field in the message.

It is possible to have any number of data element specifiers in a SELECT clause. Effectively, an
internal table of the selected data items in the message is built, with a separate column for each
data element specifier. However, this table is not what it prints as the query output. The query
output is controlled by the FORMAT clause, described in the next section.

3.6.1.2 The FORMAT Clause.

The FORMAT clause controls the output of the data items extracted from the message by the
SELECT clause. There are four output formats available:

a. text format, which presents the extracted data items as a "flat file"
b. table format, which presents the data as a relational table
c. errors format, which creates a listing of validation errors in the message
d. report format, which creates an annotated listing of a message.

The FORMAT clause is optional; it may appear no more than once in a query. By default, query
results are presented in text format.

3.6.1.2.1 Text Format.

In text format, the processor prints the extracted data items as a flat American Standard Code for
Information Interchange (ASCII) file. All of the items extracted by the first data element specifier
are printed, one per line; then all of the items extracted by the second specifier, and so forth. It

CMP SUM VER. 1.0/1.1
2/20/97

26

prints a blank line at the end of each group of data items. Within a group, data items are printed
in the order of appearance in the message. Selected data items that appear more than once in the
message are printed more than once in the output.

For example, suppose we execute the following query on the message in Figure 3-3.

SELECT MSNDAT.1, TGTLOC.1, TGTLOC.2
FROM MSGID="ATOCONF"

FORMAT TEXT;
The output of this query would be as follows:

1201I
1205H
[blank line]
241010Z
241015Z
241020Z
[blank line]
241020Z
241035Z
241040Z
[blank line]

There are three groups of data items in the output, one per data element selector in the query.

OPER/PARSER DEMO//
MSGID/ATOCONF/USCENTAF-CMBT PLANS/040101/APR//
PERID/312320Z/TO:010501Z//
AIRTASK/UNIT TASKING//
TASKUNIT/C41//
MSNDAT/1201I/JAN/EAGLE 01/3A6E/INT/-/BEST/-/20000/32001//
TGTLOC/241010Z/241020Z/B0235E61026/NAVNHQ//
TGTLOC/241015Z/241035Z/B0235E61028//
REFUEL/PIKE 13/6313S/PULLER/ALT:230/240810Z/25/TAD45//
REFUEL/PIKE 16/6316S/PULLER/ALT:230/241099Z/20/TAD43//

CMP SUM VER. 1.0/1.1
2/20/97

27

MSNDAT/1205H/JAN/SWITCH 05/2FA18/INT/-/BEST/-/20000/32005//
TGTLOC/241020Z/241040Z/B0745CA4579/ALOGHQ//
REFUEL/PIKE 18/6316S/PULLER/ALT:230/241020Z/10/TAD44//

Figure 3-3. Sample ATOCONF Message

3.6.1.2.2 Table Format.

When preparing query results in table format, the CMP assumes a relation between the data
elements specified in the SELECT clause, and preserves this relation in the output. The query
results are printed as a relational table. Each line contains one tuple, or combination of the
selected data elements. Each tuple element is surrounded by double quotes and separated by
commas.

The rows of the table output are formed by taking the columns of data items retrieved for the
individual data element specifiers and forming all possible combinations (i.e., one choice from
each column of data). Some of these combinations are eliminated by the following rules:

(1) No combinations within a set are allowed. If two data element specifiers are part of
the same set in the message format, then the corresponding items in each tuple must be
part of the same set in the message text.

(2) No combination may include data items from different segments.

Suppose we again select the MSNDAT.1, TGTLOC.1, and TGTLOC.2 fields from the message
in Figure 3-3, and this time produce output in TABLE format. We would start with the following
18 possible output rows (The row numbers, in italics, are not part of the actual output rows.):

row 1 "1201I", "241010Z", "241020Z"
row 2 "1201I", "241010Z", "241035Z"
row 3 "1201I", "241010Z", "241040Z"
row 4 "1201I", "241015Z", "241020Z"
row 5 "1201I", "241015Z", "241035Z"
row 6 "1201I", "241015Z", "241040Z"
row 7 "1201I", "241020Z", "241020Z"
row 8 "1201I", "241020Z", "241035Z"
row 9 "1201I", "241020Z", "241040Z"
row 10 "1205H", "241010Z", "241020Z"
row 11 "1205H", "241010Z", "241035Z"
row 12 "1205H", "241010Z", "241040Z"
row 13 "1205H", "241015Z", "241020Z"
row 14 "1205H", "241015Z", "241035Z"

CMP SUM VER. 1.0/1.1
2/20/97

28

row 15 "1205H", "241015Z", "241040Z"
row 16 "1205H", "241020Z", "241020Z"
row 17 "1205H", "241020Z", "241035Z"
row 18 "1205H", "241020Z", "241040Z"

Rule 1 eliminates 12 of these rows. For example, row #2 is eliminated because the values of the
TGTLOC.1 and TGTLOC.2 fields do not come from the same set in the message text. Rule 2
eliminates another three of the remaining rows. For example, row #9 is eliminated because the
MSNDAT.1 data item comes from the first MSNDAT segment, and the TGTLOC data items
come from the second segment. After applying the elimination rules, the following three rows
remain as the output of the query:

row 1 "1201I", "241010Z", "241020Z"
row 5 "1201I", "241015Z", "241035Z"
row 18 "1205H", "241020Z", "241040Z"

3.6.1.2.3 Errors Format.

This format is unlike the other two. Instead of arranging data items extracted from the message,
it produces a detailed listing of any validation errors detected in the message. This format can
only be used when the entire message has been selected. The query used to produce the error
report is "SELECT*FORMAT ERRORS."

The error report for a message first lists the segmentation hierarchy of the message. Segments are
indicated by indentation. Each new segment at a deeper level of nesting is presented at a new,
deeper indentation in the report. Each set is labeled with its presentation number. This section of
the report shows missing sets, sets out of sequence, and improperly composed sets (e.g., sets
which are missing a mandatory field). Next, the error report shows the message text. This is
where invalid fields are reported. The error report for the sample ATOCONF message in Figure
3-4 is shown below. This report shows two validation errors in the message. The second
TGTLOC set is missing its fourth, mandatory field. Also, the fifth field in the second REFUEL
set is incorrect as it contains a date-time group.

ATOCONF 281456Z APR 93 LOCAL
*** Set Sequence Validation***

(2) OPER Error#1:
(3) MSGID This set is missing
(8) PERID a mandatory field.
 (9) AIRTASK (TGTLOC sets must
 (10) TASKUNIT have four fields)

(11) MSNDAT
(13) TGTLOC

CMP SUM VER. 1.0/1.1
2/20/97

29

(13) TGTLOC
Set Error:

Missing mandatory field

(19) REFUEL
 (19) REFUEL Error#2:
 (11) MSNDAT The fifth field in this set is incorrect.
 (13) TGTLOC This field is FFIRN/FUD 143/109.
 (19) REFUEL ("99" is not a valid part of the date-

time group)
Field Validation
OPER/JMAPS DEMO//
MSGID/ATOCONF/USCENTAF-CMBT PLANS/040101/APR//
PERID/312320Z/TO:010501Z//
AIRTASK/UNIT TASKING//
TASKUNIT/C41//
MSNDAT/1201I/JAN/EAGLE 01/3A6E/INT/-/BEST/-/20000/32001//
TGTLOC/241010Z/241020Z/B0235E61026/NAVNHQ//
TGTLOC/241015Z/241035Z/B0235E61028//
REFUEL/PIKE 13/6313S/PULLER/ALT:230/240810Z/25/TAD45//
REFUEL/PIKE 16/6316S/PULLER/ALT:230/241099Z/20/TAD43//

Field Errors:

Above alpha or numeric range
Position: 5 FFIRN/FUD: 143/109
MSNDAT/1205H/JAN/SWITCH 05/2FA18/INT/-/BEST/20000/32005//
TGTLOC/241020Z/2411040Z/B0745CA4579/ALOGHQ//
REFUEL/PIKE 16/6316S/PULLER/ALT:230/241020Z/10/TAD43//

Figure 3-4. An Error Report for an ATOCONF Message

The value "99" in the "minutes" component of this field is not within the allowable range of
values.

3.6.1.2.4 Report Format.

Many people do not know the meanings of the fields in a message or the coded values of these
fields. The report format produces an easy to understand version of a message by annotating each

CMP SUM VER. 1.0/1.1
2/20/97

30

field with text describing its format and use. The result is an expanded version of the message
text in which all the message information is printed in plain text for the non-expert reader.

When the processor prints a message in report format, it prints the contents of each set plus
additional text describing the contents of that set. Linear and columnar sets receive different
treatment during this process. For example, a linear set extracted from a TACELINT message in
report format might appear as follows:

PRM
DATA ENTRY:: 01
RADIO FREQUENCY:: 00895.5MHZ
RF OPERATIONAL MODE:: D(DISCRETE FREQUENCY)
PULSE REPETITION INTERVAL IN MICROSECONDS:: 001085.897
PRI ACTIVITY CODE:: S(PULSE STAGGER)
PULSE DURATION IN MICROSECONDS:: 0.540
SCAN TYPE:: STDY (STEADY)
SCAN RATE:: -

According to the standard, the third field in a PRM set represents the "RF [radio frequency]
operation mode." The code "D" indicates that the operational mode is "discrete frequency." Both
facts are clearly reflected in the report format output.

Because the fields in a columnar set may be repeated many times, it is not practical to annotate
each field with descriptive text. Instead, the field contents are preceded by a description of each
column in the set. The column description applies to each element in the column. Figure 3-5
shows a columnar set extracted in report format from an AIRSUPREQ message:

In this example, the seventh column (WPNTY) contains two alternate field types. The descriptive
text for this column includes the description of both field types.

GENTEXT and free-text sets are exempted from report formats. The descriptive text associated
with the fields of these sets does not add to the reader's comprehension, and is therefore
suppressed.

3.6.1.3 The FROM Clause.

There may be at most one FROM clause in every query. The FROM clause describes the
messages from which data elements will be extracted. It is primarily useful in queries that are
intended to be applied to all the messages in the message repository. (It may be omitted from
queries used only in routing-table entries; these queries are always applied to a single message.)
The FROM clause describes the message domain in terms of one or more of the following three
features:

CMP SUM VER. 1.0/1.1
2/20/97

31

a. the message type name (MSGID)
b. the message originator (ORIG)
c. the time of transmission, known as the message date-time group (DTG).

A MSGID term compares the message type name to an alphanumeric string. It may specify all
messages of a particular type. It may also specify all messages that are not of a particular type.
For example:

FROM MSGID="LOCATOR" -to select all LOCATOR messages
FROM MSGID!="LOCATOR" -to select everything except LOCATOR

An ORIG term compares the message originator to an alphanumeric string. For example:

FROM ORIG="HQ ACC LANGLEY AFB VA//DRIS//"
FROM ORIG!="HQ ACC LANGELY ABF VA//DRIS//"

8FACSCD
/REF /ATKACCS /MSNNO /ATIME /CAA/ACTYP /WPNTY /CMNT
/CA0011/BRFKO SWILL /CAS011 /231345Z/ 18/A3 /AGM69A original
/CA0012/SANDY /CAS012 /231445Z/ 4/A3 /AGM69A columnar
/RE0014/TOP GUN /CAS015 /231515Z/ 4/F111A /ATOG set
/CF16A /HOT SHOT /CAS017 /232015Z/ 3/A10A /AGM65B//

8FACSCD
 COL HEADING DESCRIPTION columnar set in
 01 REF REFERENCE NUMBER report format
 02 ATKACCS ATTACK AIRCRAFT CALL SIGN
 03 MSNNO MISSION NUMBER
 04 ATIME AIRCRAFT ARRIVAL DAY-TIME
 05 CAA COUNT OF AIRCRAFT ALLOTTED
 06 ACTYP AIRCRAFT TYPE/MODEL
 07 WPNTY ORDNANCE LOAD CODE, or

WEAPON TYPE, AIR-TO-SURFACE

REF ATKACCS MSNNO ATIME CAA ACTYP WPNTY CMNT
CA0011 BRFKO SWILL CAS011 231345Z 18 A3 AGM69A
CA0012 SANDY CAS012 231445Z 4 A3 AGM69A
RE0014 TOP GUN CAS015 231515Z 4 F111A ATOG
CF16A HOT SHOT CAS017 232015Z 3 A10A AGM65B

Figure 3-5. Columnar Set in Report Format

The first clause chooses all messages sent by the DRIS office of Air Combat Command
Headquarters at Langley Air Force Base (AFB). The second clause chooses all other messages.

CMP SUM VER. 1.0/1.1
2/20/97

32

The alphanumeric strings in MSGID and ORIG terms may contain any sequence of characters.
However, these strings must be an exact match for the message text. For example, the clause:

FROM MSGID="LOCATE"
is legal, but will never select any messages, since "LOCATE" is not a valid MTF message type
name. Likewise, the clause:

FROM ORIG="HQ ACC LANGLEY A.F.B. VA//DRIS//"
will not select any messages from "HQ TAC LANGLEY AFB VA//DRIS//" because the
originator strings are not an exact match. Consequently, care must be exercised in composing
FROM clauses that contain MSGID or ORIG terms.

A DTG term compares the message transmission time to a string representing a date-time group.
A date-time group string contains exactly 14 characters in the following format:

0 1 2 2 2 5 Z A P R 9 3
 day day hour hour minute minute time zone space month month month space year year

Any of the following comparison operators may be used:

= equal to (message sent at this time)
!= not equal to (message not sent at this time)
> greater than (message sent after this time)
>= greater than or equal to (message sent at this time, or later)
< less than (message sent before this time)
<= less than or equal to (message sent at this time, or earlier)

For example, this clause selects all messages sent before 15 June 1991:

FROM DTG<"160000Z JUN 91"
A FROM clause may contain a combination of MSGID, ORIG, and DTG terms. These terms are
combined with the Boolean operators AND and OR. The AND operator has precedence over the
OR operator. Parentheses may be used to override this default precedence. For example, the
following clause selects all TACELINT and LOCATOR messages sent before 15 June 1991:

FROM (MSGID="TACELINT" OR MSGID="LOCATOR")

AND DTG<"160000Z JUN 91"
A wildcard may be used in a MSGID, ORIG, or DTG term. For example, this clause selects all
messages of any type:

CMP SUM VER. 1.0/1.1
2/20/97

33

FROM MSGID="*"

3.6.1.4 The WHERE Clause.

A query may contain at most one WHERE clause. The WHERE clause places restrictions on the
data to be extracted. It contains one or more conditional terms that must be satisfied by the
contents of each message from which data elements are to be extracted. These terms are
combined using AND and OR operators, using the precedence rules described for FROM clauses.

Terms in a WHERE clause have one of the following forms:

a. They may test whether a data element exists in the message. For example, to specify
that the message must contain an ATTACK segment, we use the term "[ATTACK]
EXIST." To specify that the message must not contain a TMPOS set, we write
"TMPOS !EXIST."

b. They may test whether a specific field's contents were formatted using a given
FFIRN/FUDN. These are valid terms of this type:

ATTACK.1 =32/2;

TMPOS.2! = 323/2
c. They may test whether a specific field matches a string constant. These are valid terms

of this type:

ATTACK.1="MK48"

TMPOS.3!="180T"
d. They may compare a specific numeric field with a numeric constant. These are valid

terms of this type:

SUB.1>2

NAVAL.1<=3
e. They may compare two numeric or string fields. These are valid terms of this type:

SUB.1>SUB.2

[SUB]ATTACK.1!=[NAVAL]ATTACK.1

The WHERE clause, if included, must follow the SELECT clause. Every field referenced in the
WHERE clause must be included in the SELECT clause.

CMP SUM VER. 1.0/1.1
2/20/97

34

The effect of the WHERE clause is to eliminate lines of output that would otherwise be produced
by the query. Conceptually, the test in the WHERE clause is applied to every line of output. If
the test fails, the output line is not printed. A WHERE clause is most meaningful when a query
either selects a single data element or uses the table output format. It has no meaning when the
errors format is used.

3.6.1.5 The WITHIN Clause.

A query may contain several WITHIN clauses. A WITHIN clause restricts data extraction to a
specified message segment. For example, if we are only interested in extracting information from
SUB segments, we can write:

WITHIN [SUB]

SELECT SUB.1, TMPOS.1, TMPOS.2
The WITHIN clause simply serves as a shorthand for the following query:

SELECT [SUB]SUB.1,[SUB]TMPOS.1,[SUB]TMPOS.2
The restriction of a WITHIN clause applies only to subsequent parts of the query; it does not
apply to any preceding clauses. In the following example, the WITHIN clause restricts only the
WHERE clause:

SELECT TMPOS.1
FROM MSGID="*"
WITHIN [NAVAL]
WHERE BRNG EXIST

The query extracts the first field of every TMPOS set in every message where there is a NAVAL
segment containing a BRNG set. These fields will be extracted regardless of whether the TMPOS
set is located within a NAVAL segment. To accomplish this latter restriction, we would use the
following query:

WITHIN [NAVAL]
SELECT TMPOS.1
FROM MSGID="*"
WHERE BRNG EXIST

A query can contain more than one WITHIN clause. The restriction imposed by the first clause
extends only to the start of the second clause. For example, the following query extracts every

CMP SUM VER. 1.0/1.1
2/20/97

35

TMPOS set contained in a NAVAL segment, but only from those messages where a BRNG set
exists within a SUB segment:

WITHIN [NAVAL]
SELECT TMPOS
FROM MSGID="*"
WITHIN [SUB]
WHERE BRNG EXIST

The query could be rewritten without WITHIN clauses as:

SELECT [NAVAL]TMPOS
FROM MSGID="*"
WHERE [SUB]BRNG EXIST

In general, WITHIN clauses are simply a shorthand notation used instead of prefixing every set
and field specifier with the segment specifier. This will help you to write simple, concise queries.
However, there are two special cases where a WITHIN clause does not simply take the place of a
segment prefix:

a. The clause "WITHIN[*]" restricts selection to data elements that appear within any
segment. Elements that are not part of any segment are excluded.

b. The clause "WITHIN []" eliminates the restriction imposed by a preceding WITHIN
clause.

3.6.1.6 The VALIDATE Clause.

The VALIDATE clause controls the parts of the message that are validated during the execution
of the query. Any errors in these parts of the message will be reported. Other errors will be
ignored.

There are two reasons for providing validation controls in a query. The first reason is that client
applications differ in their sensitivity to validation errors: some care about errors anywhere in a
message, some care about errors in the data elements they require, and some do not care about
errors at all. Validation controls make it possible to suppress the error reports that are not
wanted by the client. The second reason is that by avoiding unnecessary validation work, the
CMP can run faster.

There are four possible values for the VALIDATE clause:

CMP SUM VER. 1.0/1.1
2/20/97

36

(1) NONE: no validation is performed and no errors will be reported. This option is used
for maximum performance whenever error detection is not important.

(2) EXTRACTED: the contents of the data elements selected by the query are validated.
The set sequence of the entire message is also validated. No structural validation is
performed. Errors in the selected data elements in the message are reported; errors
elsewhere in the message are ignored and are not reported. This option is used to
avoid the expense of validating the entire message in those cases where only errors in
the extracted information must be detected.

(3) MESSAGE: the entire message is validated. All types of validation are performed,
and errors anywhere in the message are reported. No special testing is done to the
selected elements. This option is used in those cases where any error anywhere in a
message makes the whole message untrustworthy.

(4) ALL: a combination of the previous two options. The error report will indicate one
of three conditions:

(a) No errors in the message
(b) Errors in the selected data elements.

The VALIDATE clause is optional. It may appear at most once in a query. The default value is
NONE, performing no validation.

The processor reports the results of the specified validation on the .ERRORS line in the output
protocol, which is fully described in Section 3.8.2. The validation result is presented as an
integer.

This number must be interpreted as a collection of independent values represented by specific bit
positions. These values are represented as follows:

a. Bit 0 (the least-significant bit) is set if the parser found errors anywhere in the
message. Suppose the validation result is contained in the variable errs. Then, a client
program written in C can test this flag with the expression errs & 01.

b. Bit 1 is set if errors were found in the selected data elements. Client programs test this
flag with the expression errs & 02.

All other bits are unused at present. However, client programs must not depend on these bits
containing zero because they may be used in a later release.

It is important to realize that the validation results detailed above depend on both the errors
present in the message and the setting of the VALIDATE clause in the query. For example, the
fact that errs & 01 is zero means either that the message is completely valid, or that the parser
was not asked to validate the message. Table 3-1 shows the validation result returned for all
possible combinations of VALIDATE levels and message errors.

CMP SUM VER. 1.0/1.1
2/20/97

37

Table 3-1. Relation of Validation Levels and Results
ERRORS ONLY IN ERRORS ONLY IN ERRORS IN BOTH SELECTED

VALIDATION LEVEL NO ERRORS SELECTED FIELDS NON-SELECTED FIELDS AND NON-SELECTED FIELDS

NONE 0 0 0 0
EXTRACTED 0 3 0 3
MESSAGE 0 1 1 1

ALL 0 3 1 3

3.6.2 Shells

The purpose of a shell is to take the output from one or more ordinary queries and to substitute
the data items extracted by these queries into a text template. This provides the capability to
produce pure SQL statements for updating a database. It also provides a simple report generator
capability. For example, in the section describing the FORMAT clause (Section 3.6.1.2), the
query produced output in tabular format, appearing as follows:

"1201I", "241010Z", "241030Z",
"1205H", "241020Z", "241040Z".

By placing the same query inside a shell, we can produce the following SQL statements:

UPDATE MISSION_TIMES
SET MISSION_START_TIME="241010Z",

MISSION_END_TIME="241030Z"
WHERE MISSION_ID="1201I"

SET MISSION_START_TIME="241020Z",

MISSION_END_TIME="241040Z"

WHERE MISSION_ID="1205H"
With a different shell, we could produce the following report:

Mission 1201I begins at 241010Z, ends at 241030Z.
Mission 1205H begins at 241020Z, ends at 241040Z.

A shell consists of an optional syntax declaration section and one or more scope sections. The
syntax declarations define the characters used to begin and end a scope section. Each scope
section produces one block of text in the final output. A scope may contain a query, a text

CMP SUM VER. 1.0/1.1
2/20/97

38

template, both, or neither, for example, the shell used to produce the SQL statements shown
above contains two scopes: one containing only text, and one containing text and a query.

3.6.2.1 Syntax Declaration.

Shells can contain the C-style comments or C++-style comments, which start with a "//" token and
continue through the next newline character.

By default, the left and right brace characters, '{' and '}' respectively, mark the beginning and end
of each scope. However, the syntax declaration section can be used to define alternative
characters for this purpose. Each must be a single character, and neither can appear in any other
context within the shell, except within comments. When present, the syntax declaration must
appear before the shell's first scope. For example, the following statements declare that square
braces are to be used to delimit scopes:

a. #define start [
b. #define end]

3.6.2.2 Scope.

A scope contains a query part and/or a text part. The query part of the scope begins with the
token and ends at the first subsequent semicolon. It must contain a valid query. Any other text
comprises the text part, or template, of the scope. The template can contain any kind of textual
information, including placeholders.

A placeholder is an ampersand character ('&') followed by an integer; it shows where substitution
of retrieved data into a copy of the template will occur. The substitution process is repeated for
each row of data produced by executing the query. For example, the placeholder "&2" represents
where to substitute data items extracted by the second data element specifier in the scope's query
SELECT clause.

It should be noted that if a template contains placeholders, a query part must appear within its
scope. Furthermore, there must be at least as many elements in the query's SELECT clause as the
highest-numbered placeholder in the template; that is, there cannot be a placeholder "&5" unless
there are at least five elements in the query's SELECT clause.

When both are present in a scope, either the text or the query part may appear first. The scope's
query part may even appear between two text parts, although during execution the two text parts
will be treated as though they had appeared contiguously. The query must use the FORMAT
TABLE output clause; any other FORMAT is flagged as an error.

CMP SUM VER. 1.0/1.1
2/20/97

39

3.6.2.3 Shell Output.

The output of a shell is comprised of its separate scopes' outputs. The output of each scope
depends on whether it contains a query part, a text part, both, or neither. Table 3-2 summarizes
the possible scope outputs for valid combinations of queries, templates, and placeholders. For
example, if the scope contains only a query, any legal output format may be specified and the
output of the scope is the output of the query. On the other hand, if the scope contains only a
template (with no placeholders), then a single copy of that text comprises the scope's output.
Also, if the scope contains both a template and a query, but the query produces no output, then
neither does the scope.

Table 3-2. Summary of Scope Output

Query FORMAT Template Placeholders Scope Output

No N/A No N/A None

No N/A Yes Not allowed One copy of text in template

Yes Any No N/A Results of executed query

Yes Any Yes No One copy of text in
template
and results of executed
query

Yes TABLE Yes Yes n copies of text in
template
with query result
substitutions, where n is
the number of rows in the
query result

Although seldom of importance in queries, space and newline characters are significant in the text
part of a scope, as are upper- and lower-case characters. All are reproduced exactly in the shell's
output. Table 3-3 shows some examples of how newline characters affect the output of a scope.

Table 3-3. Effect of Newline Characters in Scope

 QUERY QUERY OUTPUT
 SELECT ITEM.1, ITEM.2 "123", "456"
 FORMAT TABLE "789", "OAB"

CMP SUM VER. 1.0/1.1
2/20/97

40

 scope scope output

 {SQL: A=123, B=456,;A=789,B=0AB;

SELECT ITEM.1,ITEM.2

Format Table;

A=&1, B=&2;}

 {SQL: A=123, B=456
 SELECT ITEM.1,ITEM.2 A=789, B=0AB
FORMAT TABLE;

A=&1, B=&2;

 }

 {SQL: [blank line]
 SELECT ITEM.1, ITEM.2 A=123, B=456
 FORMAT TABLE; [blank line]
 [blank line] A=789, B=0AB
A=&1, B=&2;

 }

query query output

3.6.2.4 Output Directive.

By default, the shell outputs from scopes are concatenated together and sent to the display screen
or to an awaiting application. But it is also possible to use a special shell directive to indicate the
line printer, the screen, or a named file as the default destination for scope output. The following
are examples of valid shell output directives:

a. #output PRINTER //default output goes to the line printer
b. #output SCREEN //default output goes to the screen

c. #output "Shell.Out" //default output goes to the named file.

Where output directives appear in the shell determines which of its scopes are affected. Multiple
directives can be provided, but each one must be positioned outside of any scope (e.g., before the
first scope or between one end of scope marker and a subsequent beginning of scope marker).
When a directive is present, the output from any scope appearing after it in the shell but before

CMP SUM VER. 1.0/1.1
2/20/97

41

another output directive will be written to the specified destination. Any scope that is not
preceded by a shell output directive will write its results to the normal default location.

For example, suppose a shell contains two scopes and you want both scopes' outputs to be
written to a file called "SUMMARY.dat". You could write as first line of the shell the output
directive naming "SUMMARY.dat" to accomplish this.

If the execution of the scope's query does not produce any output rows, then there is nothing to
substitute into the template. In this case, the scope does not produce any output.

If a scope has both a query part and a text part, but the text part of a scope does not contain any
placeholder tokens, then no text substitution is performed. Instead, the query is executed, and the
scope's output then consists of the results of the query and a copy of the text part.

3.7 USER INTERFACE REFERENCE

The UI is a window-based application using the X Window System and the Motif Graphical UI
toolkit. The UI allows users to tell the processor about new client applications, ask questions
about the messages that have arrived, and make corrections to messages that contain errors. This
section describes how to start the UI, and manipulate the UI with the keyboard and a mouse, and
lists the display windows and functions available within the UI.

3.7.1 Starting the User Interface

Before users can start the UI, the administrator must have already started the message processor.
 Also, users must belong to the CMP group, and must have the parser commands directory
(usually/usr/local/parser/bin) in their PATH variable.

The X Window system and the Motif window manager must be running on the user's terminal
before the UI can be started. On some systems, X and Motif will be started automatically (by the
xdm program) when the user logs in. On other systems it is necessary for the user to start X
manually, using the startx or xinit commands. Some SUN systems use Open Windows, which is
a superset of X, and on these the user must use the openwin command.

To start the user interface, enter parser ui at the UNIX prompt. After a brief delay, the UNIX
prompt will reappear. After a slightly longer delay, the UI window will appear on the display.

3.7.2 Controlling the User Interface

3.7.2.1 Mouse Buttons.

CMP SUM VER. 1.0/1.1
2/20/97

42

The interface is based on the Open Software Foundation (OSF)/Motif user environment, which is
in turn based on the X Window System. In this environment the processor displays its output in
"windows" on the display, and the user supplies new commands with a mouse in addition to the
keyboard. The following terminology is widely used to describe the use of the mouse and its
buttons:

a. To point to something on the display, move the mouse until the pointer is positioned
over the item.

b. To click on something, point to it, then press and release the mouse button without
moving the mouse. Generally you will use the select button, which is the left button
on the mouse.

c. To drag something, point to it, then move the mouse while pressing and holding the
mouse button.

3.7.2.2 Point and Click Commands.

There is a set of "point-and-click" commands that use the mouse and are common to all Motif
applications. These include:

a. moving a window (by dragging its title bar)
b. re-sizing a window (by dragging the window's frame)
c. changing a window into an icon (by clicking the minimize button)
d. choosing from a pull-down menu (by clicking on the menu bar).

There may be several windows on the display. Only one window, the active window, receives
input from the keyboard. To activate a different window, point to the window and click the select
button. The window frame of the selected window will change color to remind you that it is now
the active window.

Many operations are chosen through the pull-down menu. When prompted in the manual to
"choose Windows Queries," first point to "Windows" in the menu bar, click the select button, and
then point and click on "Queries" in the menu that appears. The UI uses several standard Motif
controls for user input, including check boxes, input fields, and push buttons.

A check box is a toggle switch that turns some feature on and off. The feature is "on" when the
box is dark and depressed; it is "off" when the box is light and raised. To toggle a check box,
point to it with the mouse and click the select button.

An input field is where text is entered to be read by the CMP. In this manual, when instructed to
"type into an input field," first click it with the mouse (to select it) and then enter text using the

CMP SUM VER. 1.0/1.1
2/20/97

43

keyboard. The selected (or "active") input field has a dark solid border and contains a blinking
text cursor. The backspace, delete, and cursor arrow keys can all be used to edit the entered text.

3.7.2.3 Push Buttons.

A push button performs some immediate action. In this manual, when instructed to "press" a
push button, point to it with the mouse and click the select button. Certain push buttons perform
the same action in several different windows. These are the Update, Close, OK, and Cancel
buttons.

a. UPDATE - When this button is pressed, the contents of the active window are
regenerated. This is necessary because the processing requirements do not allow these
windows to be updated in real time. The system may receive data or another user may
change the state of the system; these events will not be reflected in the contents of the
current window until the user presses the Update button.

 b. CLOSE - The Close button will close the current window.
c. OK - The OK button will cause the currently requested operation to take effect, using

the information entered into any input fields and check boxes. The window is then
closed.

d. CANCEL - The Cancel button will cancel the current operation. Any information
entered into input fields or check boxes is discarded.

The UI uses certain standard Motif controls to display information and to permit the user to make
selections from the display. These include list boxes and scroll bars. Each line in the list box
displays a single list item. To select a list item, point to it and click the select button; the selected
item will then be displayed in reverse video. Some of the commands available through the pull-
down menus apply to the selected list item. For example, if the Command Delete were chosen,
then the "locator" list item would be deleted.

A scroll bar appears whenever there are too many items to fit into a list box. You can control the
portion of the list that is displayed in the list box by clicking on either of the arrow buttons, or by
dragging the slider up or down to a new position in the scroll bar.

3.7.3 Functions Available through the User Interface

Most of the functions required to interact with the parser are represented as options on the
Windows pull down menu pane. Each option invokes a new window specific to its associated
function. For example, selecting Routing from the Windows pull down menu will activate a
window allowing access to the parser routing database.

CMP SUM VER. 1.0/1.1
2/20/97

44

Once a window has been activated and displayed, there are typically two ways to access the
operations available from within that window:

a. The Commands pull down menu: This menu contains actions common to most of the
windows. For example, the Message Repository, Queries, and Log windows all make
use of Delete and Print on the Commands pull down menu.

b. Push button within each window: A control region containing push buttons exists in
each window and offers actions specific to a particular window. For example, the
Queries window provides an Execute button that submits a selected query to the
parser. This action is specific to Queries and thus does not appear elsewhere.

3.7.3.1 The Message Journal Window.

The Message Journal is a data storage area for all messages retained by the processor. Access to
stored messages is obtained through the Message Repository window, which provides functions
allowing a user to maintain and browse the message database. Each of these functions is
described in detail in the following sections.

3.7.3.1.1 View Messages.

To view the text of a message saved in the message repository, select an item from the displayed
list, then either choose Commands View from the master menu or press the View button in the
window's control region. The text of the message will appear in a newly created window on the
screen.

3.7.3.1.2 List Messages.

The List command allows you to list messages selectively in the message repository. By default,
the message repository lists all the messages that have been saved. To use the List command,
activate the List button. List will prompt for a message identifier, date-time group, Plain
Language Address (From, To) and originator, and will then list only those messages that match
these input specifications. For example, if you specify ATOCONF for the message identifier, then
only ATOCONF messages will be listed in the message repository window. Note that the list
criteria will remain in effect until modified again.

3.7.3.1.3 Delete Messages.

The Delete commands (found only on the Commands pull down menu pane) allow you to delete
messages from the message repository.

CMP SUM VER. 1.0/1.1
2/20/97

45

To delete a single message, select the message in the message repository, then choose Commands
Delete.

To delete a group of messages, choose Commands Delete By. This will produce the Delete By
window. Delete By will prompt for a message identifier, date-time group, Plain Language
Address (From, To) and originator, and will then delete only those messages that match these
input specifications. For example, if ATOCONF is entered for the message identifier, then all the
ATOCONF messages in the message repository will be deleted.

3.7.3.1.4 Correct Messages.

If errors are discovered in a message that has been saved in the message journal, then corrections
can be made via the message editor. To use the processor to correct a message in the message
journal, select the message to be corrected and press the Correct button at the bottom of the
Message Journal window. The window will then appear and corrections can be made. Refer to
the User's Manual for instructions on CMP operation. When all the corrections have been made,
exit the processor, and the corrected message will be returned to the message journal.

3.7.3.1.5 Submit Message. ((Not currently implemented))

The Submit command takes a message from the message journal and causes it to be processed in
the manner specified by the routing information for that message type. In essence, Submit
simulates the actual receipt of the message from the communications port. This can be useful
when errors are detected in messages. The objective CMP will route messages containing errors
to an interactive message queue. Currently, when an error is found, the processor can be used to
correct the message. Once corrected, the message will appear in the Message Repository.
Submit is then used to feed the message through the processor, extract the required data and
route it to any waiting application. Submit can also be useful for programmers and administrators
when setting up new or modifying existing application and routing information. When a message,
is submitted, the routing, application, and query information are executed for this message as if it
were a newly received message. Any existing query will be applied to the message, and the
results will be routed to the application specified in the routing information.

To submit a message for further processing, select the message in the Message Journal window
and activate the Submit button.

3.7.3.1.6 Update.

The Message Journal window's message list is not automatically updated as new messages arrive
in the database. To display any newly arrived messages, activate the Update button in the
window's control region.

CMP SUM VER. 1.0/1.1
2/20/97

46

3.7.3.1.7 Report.

This command generates an annotated listing of a selected message in a separate display window.
 To select this command, press the Report button in the control region.

3.7.3.1.8 Errors.

This command generates an error report for a message describing the results of the validation
process. This report can be displayed for any message in the database by selecting the message
and pressing the Errors button in the control region.

3.7.3.2 The Queries Window.

Queries are used to specify data to be extracted from messages. The Query Repository is a data
storage area for all queries known to the processor. This database can be accessed by selecting
Queries from the Windows pull down menu. This will produce a list of available queries in the
Queries window. Actions associated with the Query Repository are described in detail in the
following sections.

3.7.3.2.1 New.

To create a new query, choose Commands New. This will produce a window that contains a box
for the query name and a box for the text of the query. Enter the name and the query text, and
then click the Validate button. If the query is valid, press the OK button and the query will be
added to the query repository. Pressing the OK button will also validate the query and alert the
user if it is invalid. The system will not add an invalid query to the Query Repository.

3.7.3.2.2 Edit.

To change the text of a query, select the name of the query to be modified and choose Commands
Edit. This will produce a window containing the query name and its text. After modifying the
text, press the Validate button to check the validity, or OK to commit the change to the Query
Repository. The system will not allow an invalid query to enter the Query Repository.

3.7.3.2.3 View.

To view a query, select the name of the query in the Queries window and choose Commands
View.

3.7.3.2.4 Delete.

CMP SUM VER. 1.0/1.1
2/20/97

47

To delete a query, select the name of the query in the Queries window and choose Commands
Delete.

3.7.3.2.5 Save.

To save a query under a new name, select the name of the query in the Queries window and
choose Commands Save As. A window will appear containing the text of the selected query and a
blank field for the new name. Fill in the name of the new query and press the OK button.

3.7.3.2.6 Print.

To print a query, select the name of the query in the Queries window and choose Commands
Print.

3.7.3.2.7 Execute.

To execute a query interactively, select the name of the query in the Queries window and press
the Execute button. The results of the query will be displayed in a new window and also saved in
the Query Report Repository. The report can be identified in the repository by the time that it
was created.

3.7.3.2.8 Update.

The Query Repository window's query list is not automatically updated as new queries arrive in
the database. To display any newly entered queries, press the Update button in the window's
control region.

3.7.3.3 The Query Reports Window.

A query report contains the results of the interactive execution of a query on a message. See
Section 3.5.2.2 for information on interactive query execution. To access query reports, choose
Windows Query Reports. Available actions are described in the following sections.

3.7.3.3.1 View.

To view a query report, select the name of the report in the Query Report window and choose
Commands View.

3.7.3.3.2 Delete.

CMP SUM VER. 1.0/1.1
2/20/97

48

To delete a query report, select the name of the report in the Query Report window and choose
Commands Delete.

3.7.3.4 The Routing Window.

Routing is used to tie queries and applications together. The query will run against a message
received by the CMP, causing a query report to be generated. This report is then sent to the
associated application specified in the routing table.

The routing window lists the message types that are of interest. The "SAVE" flag indicates that
the particular message type is saved after being received by the system. Available actions are
described in the following sections.

3.7.3.4.1 New.

To add a new message type to the routing tables, choose Commands New. This will produce a
window containing a text box for the message type and a check box for SAVE. Enter the
message type in the text box and click the check boxes for appropriate values. Then press the OK
button.

3.7.3.4.2 Edit.

To change the flag for a particular message type, select the message type to be modified and
choose Commands Edit. This will produce a window containing the message type name and the
check box for SAVE. Modify the flag as desired and press the OK button.

3.7.3.4.3 Delete.

To delete routing for a message type, select the message type in the Routing window and choose
Commands Delete.

3.7.3.4.4 Save.

To save one message type as another message type, select the message type to be replicated and
choose Commands Save As. This will produce a window with a text box. Fill in the text box with
the new message type and press the OK button.

3.7.3.4.5 Applications.

To access applications related to a message type, select the message type of interest in the
Routing window and press the Applications button in the control region. This will produce a

CMP SUM VER. 1.0/1.1
2/20/97

49

window that lists the applications associated with the selected message type. Actions available in
the Applications window are described next.

3.7.3.4.6 New.

To add a new application, choose Commands New. This will produce a window with text input
fields and check boxes. The text fields are for application name, the host where the application
resides, and the name of the query that will produce a report for the application.

Fill in the text for application, host, and query name, click the appropriate validation boxes, and
press the OK button. Note that the query named must already exist in the query repository before
the new application is added to the routing tables.

3.7.3.4.7 Edit.

To edit an application, select the application in the Applications window and choose Commands
Edit. This will produce a window with the application information. Make the necessary changes
and press the OK button.

3.7.3.4.8 View.

To view an application, select the name of the application in the Applications window and choose
Commands View.

3.7.3.4.9 Delete.

To delete an application, select the name of the application in the Applications window and
choose Commands Delete.

3.7.3.4.10 Save.

To save an application under a new name, select the name of the application in the Applications
window and choose Commands Save As. This will produce a window with the application
information. Fill in the application text field and press the OK button.

3.7.3.5 The Log Window.

The audit log provides a sequential list of major events that occur within the processor. Event
descriptions are provided along with the date and time that the event occurred. Examples of the
types of events reported to the Log are: creation of processes during startup, or receipt of a new
message. This serves to provide the user or system administrator with an audit trail of important

CMP SUM VER. 1.0/1.1
2/20/97

50

transactions and events. The Log may be cleared at any time by choosing Commands Delete
when the Log is the active window.

3.7.3.6 The Message Error Log Window.

This feature is presently not implemented. In future releases the processor will display message
errors in this window as they are discovered during message parsing or query execution. This
window will be scrollable, providing a way to review all errors found in messages.

3.8 THE APPLICATION PROGRAM INTERFACE

Client systems use the processor to validate incoming messages and extract the information of
interest. This section describes the interface between the processor and these client systems. The
first part describes the syntax of client configuration files, which specify the services required by
a client. The second part describes the output protocol, which specifies how information is sent
from the CMP parser to client programs. The last part describes the input protocol, which
specifies how a client program can submit a message to the CMP for processing. (For more in-
depth information concerning API configuration see the CMP API definition document.)

3.8.1 Client Configuration Files

A client configuration file contains the information required to register a client program with the
message processor. This information specifies the types of messages of interest, the data items to
be extracted from these messages, and the destination to which the extracted data should be
routed. Client configuration files are ordinary text files and can be edited with any text editor.
The intention is that the developers of a system will compose a client configuration file and
distribute this file together with their system software. When this system software is installed at
an operational site, the client configuration file will be installed in the configuration directory at
the site.

a. The CMP reads the client configuration files at startup time. The processing proceeds
as follows:

(1) Configuration file processing is only performed during a coldstart operation. The
configuration files will be ignored upon a warmstart.

(2) The configuration directory must be specified by the ATT.confdir variable in the
.MAPSconfig file. If this variable does not exist, then the CMP will not read any
configuration files. If the specified directory does not exist or cannot be read, then
it terminates with an error message.

(3) Each file in the directory with a name ending in .ccf is read and processed. For
example, demo.ccf will be processed, while demo will be ignored. The files are

CMP SUM VER. 1.0/1.1
2/20/97

51

processed in alphabetical order. If any of the .ccf files cannot be read, the
processor terminates with an error message.

(4) Each definition must be completely contained within a single file. It is possible for
a definition in one file to refer to a definition in a previously-processed file;
however, this is strongly discouraged. As a matter of programming style, each file
should be completely self-contained.

b. Each client configuration file contains a series of definitions. Four kinds of definitions
may be included in the file:

(1) Query: Defines a query
(2) Shell: Defines a shell, which contains zero or more queries
(3) Routing: Adds a single entry to the routing table
(4) Message: Sets the save message and/or full parse flags for one message type.

In general, names in a client configuration file are case-insensitive; that is, the parser considers the
strings query, QUERY, and QuErY to be identical. Lowercase characters are mapped to
uppercase. The only exception to this rule is the command strings that are part of routing
definitions (see Section 3.8.1.3).

Comments may be inserted at any point. The '#' character is the comment character. This
character and all subsequent characters on the line are ignored.

Every definition in a client configuration file has a name. These names may contain any mixture
of alphanumeric characters, hyphens (-), underscores (_), and period (.). Furthermore, any string
may be used as a name if it is enclosed in double-quote characters. This mechanism permits
names that contain spaces; for example, "OPTASK LINK."

3.8.1.1 Query Definitions.

The syntax of a query definition is as follows:

query name = query-string

The name is the query name submitted to the processor. If another query or shell having the same
name has been previously defined, it terminates with an error message.

The query-string is the text of the query being defined. It must be a valid query; otherwise, CMP
terminates with an error message. Every query contains exactly one semicolon, which must be the
last character. This final semicolon also marks the end of the query definition.

3.8.1.2 Shell Definitions.

CMP SUM VER. 1.0/1.1
2/20/97

52

The syntax of a shell definition is as follows:

shell name = { shell-string };

The name is the shell name submitted to the processor. If another query or shell having the same
name has been previously defined, it terminates with an error message.

The shell-string is the text of the shell being defined. It consists of any sequence of characters in
which the number of open-brace ({) characters is equal to the number of close-brace (})
characters. It must form a valid shell; otherwise, the processor terminates with an error message.
 Unlike a query definition, the final semicolon in a shell definition does not become part of the
shell.

3.8.1.3 Routing Definitions.

The syntax of a routing definition is as follows:

route msgtype query q-name [host hostname] cmd cmd-string;

The msgtype is the name of the message type being routed.

The query section is mandatory. It specifies the name of the query or shell that will be run on
each incoming message of the specified message type.

The host section is optional. The hostname specifies the name of the machine that will run the
client application receiving the query results. If this section is omitted, the processor assumes
host localhost.

The cmd section is mandatory. The cmd-string specifies the name of the client application that
will be executed each time a msgtype message arrives. It consists of any sequence of characters,
not including a semicolon (";"). In this string, the case of alphabetic characters is significant; for
example, /usr/local/isum/isum may not have the same effect as usr/local/isum/ISUM.

The command string will eventually be executed by the Bourne shell sh(1), so it is unwise to write
a command string that includes characters having special significance to the shell.

There may be several routing definitions for the same message type. The processor will execute
the behavior specified for each routing definition whenever it receives a message of that type.
The order of execution of the routing behaviors is undefined.

3.8.1.4 Message Definitions.

The syntax of a message-processing definition is as follows:

set msgtype [save = saveflag] [fullparse = parseflag];

CMP SUM VER. 1.0/1.1
2/20/97

53

The msgtype specifies the type of message.

The save section is optional. The saveflag specifies whether the parser will retain incoming
messages of this type in the message repository. It must be either yes or no. If this section is
omitted, the parser assumes save=no.

The fullparse section is optional. The parseflag specifies whether the parser will completely
process each incoming message of this type, or only those portions requested by client
applications. It must be either yes or no. If this section is omitted, it assumes fullparse=no.

It is possible to have more than one message processing definition for a message type. When this
occurs, the parser assumes save=yes if any definition sets save=yes, and assumes fullparse=yes if
any definition sets fullparse=yes.

The default behavior for message types that do not have message processing definitions may be
set by a definition for the default message type.

3.8.2 The Output Protocol

Client applications register themselves with the processor by specifying the types of messages of
interest, the data items to be extracted from these messages, and the destination to which the
extracted data should be routed. When these messages arrive, it performs the specified
processing and sends the resulting data to the client applications through the output protocol.
This protocol includes both the mechanism and the format of the data transfer.

3.8.2.1 The Data Routing Mechanism.

Routing entries specify a message type, a query, a host name, and a command string. When a
message of the specified type arrives, the processor applies the query to the message, saving the
output in a temporary file. It then executes the command string on the specified host using the
UNIX system(3) function and the rsh(1) command. For example, given a new TACELINT
message and the following routing definition:

route tacelint query isum-01 host bartender cmd/usr/isum/isum;

the processor first saves the output from isum-01 into a temporary file, and then executes the
following string with the system(3) function:

rsh bartender/usr/isum/isum<tempfile &

The effect is to redirect the query output to the standard input of the isum command, which is
executed on the remote host bartender.

Here are some observations about the routing mechanism:

CMP SUM VER. 1.0/1.1
2/20/97

54

a. If the specified host is the special string localhost, then the parser omits the "rsh
hostname" from the command string sent to system(3). The command is instead
executed on the machine executing the message processor.

b. The executed command is not expected to produce any results on either its standard
output or standard error stream. If it does, the output is copied without any sort of
identifying remarks to the control terminal of the message processor.

c. The command is executed asynchronously, using the background mechanism in the
Bourne shell. Consequently, the processor does not wait for the command to finish
before proceeding to its next task. If another message arrives before the command is
complete, it simply invokes a separate copy of the command. In theory, the CMP
could run out of processes on either the local or remote machine. If this happens, it
will silently discard data until process table entries become available.

d. The command is executed with the effective user-id and group-id of the message
processor. Normally, this is the system administrator account.

3.8.2.2 The Data Transfer Format.

Some client applications need to have certain information attached to the message data extracted
by the processor: message originator, DTG, classification, etc. This information is called
envelope data, because it pertains to the addressing of the message and not its contents. When
the processor sends the output of a query to a client application, it encloses the output in an
output wrapper, which contains the envelope data from the source message. The output and
output wrapper together form a data package.

The processor obtains the envelope data for the output wrapper in one of two ways. The
envelope data may be supplied directly to the processor through the input protocol (see Section
3.8.3).

It also processes the communication header lines on the input message to obtain envelope data.
For example, it obtains envelope data from format lines 3, 5, 6, and 7 of JANAP-128 headers. If
there is a conflict between the two sources (that is, the input protocol says one thing and the
message header says another), then the processor will use the value from the input protocol. If
neither source supplies a value for a particular envelope field, then it will use a default value.

3.8.2.2.1 Format Rules.

The information sent to client applications will always conform to the following format rules:

a. Wrapper lines always have a period as the first character on the line. Data lines never
do.

CMP SUM VER. 1.0/1.1
2/20/97

55

b. All of the header lines will precede all of the data lines, which will precede all of the
trailer lines.

c. The .END trailer line will always appear and will always be the last line in the package.
d. With the exception of the .END line, each wrapper line contains the value of one field

in the envelope data. Wrapper lines begin with the initial period, the field name
(MSGID, FROM, etc.), and a single space character (which is not part of the field
value). The rest of the line is the value of the envelope item. This value will never
contain more than 255 characters.

e. Header lines may appear in any order. Certain lines are optional; if they do not appear,
then the value of the corresponding field is unknown.

3.8.2.2.2 Envelope Fields.

There are six envelope fields defined in the current output protocol. New envelope fields may be
added to the protocol at any time, so client applications that process the wrapper lines must
search for the envelope fields they require and ignore the fields they do not need. The defined
envelope fields are:

a. The .MSGID line contains the message short name, extracted from field #1 of the
MSGID set. (This is the only wrapper line containing information from the message
text.)

b. The .FROM line contains the name of the message originator. For messages that have
a JANAP 128 communications header, this field is extracted from the FM field, format
line 6. The default value of this field is LOCAL.

c. The .TO line contains the name of the message addressee. For messages with a
JANAP 128 header, this field is extracted from the TO field, format line 7. There is no
default value for this field; if the value is unknown, the line is omitted from the
wrapper.

d. The .DTG line contains the date and time at which the message was created. For
messages with a JANAP 128 header, this field is extracted from the R field, format line
5. The field is 14 characters long, in the following format:

112233Z JAN 91
Characters 1 and 2 are day-of-month; characters 3 and 4 are hours (24-hour format);
characters 5 and 6 are minutes; character 7 is a time-zone code; character 8 is a space;
characters 9 through 11 are the month; character 12 is a space; characters 13 and 14 are the
year.

CMP SUM VER. 1.0/1.1
2/20/97

56

e. The .CLASSIFICATION line indicates the security classification level of this message.
 For messages with a JANAP 128 header, this field is extracted from format line 3.
The value of the field is a single character. The meanings of the possible values are
defined in the JANAP 128 standard. There is no default value for this field; if the
value is unknown, the line is omitted from the wrapper.

f. The .ERRORS line describes the result of the validation tests performed on this
message. (See Section 3.6.1.6 for a description of message validation.) The value of
this field is a number, possibly followed by text. The number is the only part of
interest to automated systems; the subsequent text is a comment, for human readers
only. The numeric part of the validation results must be interpreted as a collection of
independent values represented by specific bit positions. These values are represented
as follows:

 bit 0 (the least-significant bit) is set if the processor found errors anywhere in the
message, and bit 1 is set if it found errors in the selected data elements.

All other bits are unused at present. However, client programs must not depend on these bits
containing zero because they may be used in later parser release.

3.8.3 The Input Protocol

Incoming messages are submitted to the processor through the input protocol. This protocol
includes the input mechanism. It also includes a special input format that allows the submitting
program or user to supply envelope data without going to the trouble of constructing a valid
message header.

3.8.3.1 The Message Input Mechanism.

The preferred way of submitting a message to the processor is to use the mtf2parser program.
The arguments to this program are the names of files containing messages. The program can also
read a single message from its standard input.

It is also possible to submit a message by copying it directly into a new file in the mio directory
(see Section 3.4.2.2). The processor polls this directory for new files with a filename ending in
the three characters .in. As soon as it finds such a file, it reads the contents as a new message and
unlinks the file. To avoid a race between the processor and the copy operation, it is necessary to
copy and then rename the new message file, for example:

cp message/usr/local/parser/mio/newmsg
mv/usr/local/parser/mio/new/usr/local/parser/mio/new.in

CMP SUM VER. 1.0/1.1
2/20/97

57

This method of submitting a message is discouraged because the process of polling the mio
directory may be eliminated in a subsequent release.

3.8.3.2 The Message Input Format.

The message input format allows a message to be accompanied by envelope data without
requiring this data to be placed into any particular communications protocol; for example, JANAP
128. Instead, the message text is optionally preceded by a simple, extensible header section that
resembles the output wrapper in the output protocol. The input header appears as follows:

.FROM Plain Language Address (PLA)

.TO DHDIAZZ/SYJ

.DTG 011200Z APR 93

.CLASSIFICATION U

Each line in the header contains the value of one field in the message envelope data. Message
header lines have the following specifications:

a. Header lines always have a period as the first character on the line. All of the header
lines will precede all of the lines in the message text.

b. The identifier token (FROM, DTG, etc.) must be an exact match with one of the
predefined message envelope fields. Case is significant.

c. There must be a space character following the identifier token. This character does
not become part of the field's value.

d. The rest of the input line is the value of the field. In no case will the processor read
more than the first 255 characters of the value. Excess characters are silently
discarded.

e. The value of the DTG field must contain exactly 14 characters in the following format:
DDHHMMZ SMMMSYY (where D = day; H = hour; M = minute; Z = time zone; S =
space; M = month; S = space; Y = year)

f. Header lines may appear in any order. All header lines are optional; if they do not
appear, then the value of the corresponding field is unknown. (A default value may be
used, or a value may be obtained from the message's communication header.)

g. Header lines that do not satisfy these rules are silently discarded.

There are four header lines defined in the current input protocol. Of these, the .FROM and
.DTG lines are used internally by the processor. These fields, together with the message type,
form a unique identifier for the message. For example, messages are listed in the message journal
by this identifier. Users must be careful to avoid submitting two messages with the same message

CMP SUM VER. 1.0/1.1
2/20/97

58

type, originator, and date-time group. The .TO and .CLASSIFICATION header lines are simply
passed through to the output. Their values are not used internally.

The processor input header may be combined with messages that have JANAP 128 headers. In
case of conflict between the processor header section and the message JANAP header lines, the
values in the processor header will be used.

(Note: future releases of the CMP will contain a generic header. The generic header will contain
data fields sufficient to allow the communications module to use which ever format is required
and will present a consistent look and feel to the user.)

3.9 ERROR MESSAGES

The following are error messages that are incorporated into the output of a validated message.
Note that error messages immediately follow the line error discovered. A total validated message
will have no error message returned.

A problem with range validation.
ACTION: The range of the field contents was not validated because other types of errors
were previously detected. Select the correct option and refer to the Message Generation (Section
4) Help text function for proper format and allowable range.

Bad classification redundancy in line 4.
ACTION: A message has been received in error. Notify originator to resend the message.

Bad date-time group in line 5.
ACTION: A message has been received in error. Notify originator to resend the message.

Bad day in line 5.
ACTION: A message has been received in error. Notify originator to resend the message.

Bad end of line 2.
ACTION: A message has been received in error. Notify originator to resend the message.

Bad hours in line 5.
ACTION: A message has been received in error. Notify originator to resend the message.

CMP SUM VER. 1.0/1.1
2/20/97

59

Bad minutes in line 5.
ACTION: A message has been received in error. Notify originator to resend the message.

Bad operating signal in line 4.
ACTION: A message has been received in error. Notify originator to resend the message.

Bad separator in line 4.
ACTION: A message has been received in error. Notify originator to resend the message.

Bad separator in line 5.
ACTION: A message has been received in error. Notify originator to resend the message.

Bad time zone in line 5.
ACTION: A message has been received in error. Notify originator to resend the message.

Bad year in line 5.
ACTION: A message has been received in error. Notify originator to resend the message.

Cannot determine FFIRN/FUDN.
ACTION: The MTF cannot determine the FFIRN/FUDN needed for validation. Check MIL-
STD-6040 for correction contents.

Cannot divide up a composite field.
ACTION: The composite contents of the field cannot be divided into elements for validation.
 Select the correct option and refer to the Message Generation (Section 4) Help text function for
correct format.

Cannot find S logic separator.
ACTION: Cannot find the separator between elements in the contents of this field. Select the
correct option and refer to the Message Generation (Section 4) Help text function for correct
format and contents.

Cannot find validation rules in data tables.
ACTION: The validation rules of the FFIRN/FUDN are not in the data tables. Select the
correct option and refer to the Message Generation (Section 4) Help text function for correct
format and contents.

CMP SUM VER. 1.0/1.1
2/20/97

60

Cannot identify first field in the composite.
ACTION: The first element of this composite field is not numeric. Select the correct option
and refer to the Message Generation (Section 4) Help text function for correct format.

Cannot resection an un-sectioned message.
ACTION: A message has been received in error. Notify originator to resend the message.

Character not in legal set.
ACTION: The field contains an invalid character. Select the correct option and refer to the
Message Generation (Section 4) Help text function for valid characters.

Checksum does not match.
ACTION: The checksum comparison of the running checksum total and the checksum
element of the field has failed. Select the correct option and re-compute all numbers in the field.

Command line error.
ACTION: The data entered when initializing the system is incorrect. Usage is: parser
[warmstart(comm)|coldstart(comm)][ui]

Composite field is too short.
ACTION: A composite element entered in the field is shorter than required. Select the
correct option and refer to the Message Generation (Section 4) Help text function for correct
format.

Decimal point prohibited in this numeric range.
ACTION: The field value does not contain a required decimal point. Select the correct
option and refer to the Message Generation (Section 4) Help text function for the correct format.

Decimal point required in this numeric range.
ACTION: The field value does not contain a required decimal point. Select the correct
option and refer to the Message Generation (Section 4) Help text function for the correct format.

Duplicate section.
ACTION: A message has been received in error. Notify originator to resend the message.

End of line 4 not found.
ACTION: A message has been received in error. Notify originator to resend the message.

CMP SUM VER. 1.0/1.1
2/20/97

61

End of line 5 not found.
ACTION: A message has been received in error. Notify originator to resend the message.

End of message not found.
ACTION: A message has been received in error. Notify originator to resend the message.

Field above alpha or numeric range.
ACTION: The value contained in the field is above the valid range. Select the correct option
and refer to the Message Generation (Section 4) Help text function for the allowable range.

Field below alpha or numeric range.
ACTION: The value contained in the field is below the valid range. Select the correct option
and refer to the Message Generation (Section 4) Help text function for the allowable range.

Field entry too long.
ACTION: Entry in the field is longer than the maximum allowed. Select the correct option
and refer to the Message Generation (Section 4) Help text function for allowable length.

Field entry too short.
ACTION: Entry in the field is longer than the maximum allowed. Select the correct option
and refer to the Message Generation (Section 4) Help text function for allowable length.

Field is empty.
ACTION: The contents of the field are missing. Select the correct option and refer to the
Message Generation (Section 4) Help text function for correct contents.

Field prefix is bad.
ACTION: The prefix does not match the defined prefix according to the rules specified by the
FFIRN/FUDN. Select the correct option and refer to the Message Generation (Section 4) Help
text function for allowable values.

Invalid query specified.
ACTION: The syntax of the query text is incorrect. Reference the User's Manual for the
correct syntax.

Line 11 not found.
ACTION: A message has been received in error. Notify originator to resend the message.

CMP SUM VER. 1.0/1.1
2/20/97

62

Line 13 not found.
ACTION: A message has been received in error. Notify originator to resend the message.

Line 2 not found.
ACTION: A message has been received in error. Notify originator to resend the message.

Message is sectioned and without line 5.
ACTION: A message has been received in error. Notify originator to resend the message.

Message is sectioned and without line 6.
ACTION: A message has been received in error. Notify originator to resend the message.

MSGID not found or message not in standard.
ACTION: A message has been received in error. Notify originator to resend the message.

Multiple sections in message section.
ACTION: A message has been received in error. Notify originator to resend the message.

No match on code list.
ACTION: The FFIRN/FUDN contains '-' instead of 'UNK'. MIL-STD-6040 requires 'UNK'
to be used to denote missing data. If this is not the reason for the error, check MIL-STD-6040
for allowable codes.

Not in alphabetic sequence.
ACTION: Field entry is out of sequence. Select the correct option and refer to the Message
Generation (Section 4) Help text function for the correct sequence.

Not left justified in field.
ACTION: The field is not left justified. Select the correct option and refer to the Message
Generation (Section 4) Help text function for correct format.

Not right justified in field.
ACTION: The field entry is not right justified. Select the correct option and refer to the
Message Generation (Section 4) Help text function for correct format.

Output file expected after -o flag.
ACTION: The next argument following -o must contain the file name of the output file.

CMP SUM VER. 1.0/1.1
2/20/97

63

Query file expected after -qf flag.
ACTION: A file name that contains the query text must follow -qf. Check the spelling of the
file name.

Query string expected after -q flag.
ACTION: The next argument following -q must contain the text of the query. It is necessary
to enclose the query in quotes.

Repeated codes not permitted.
ACTION: Repeated codes are not permitted. Select the correct option and refer to the
Message Generation (Section 4) Help text function for correct format and contents.

Section count mismatch.
ACTION: A message has been received in error. Notify originator to resend the message.

Too few fractionals to the right of the decimal point.
ACTION: The field contains more digits to the right of the decimal point than are allowed.
Select the correct option and refer to the Message Generation (Section 4) Help text function for
the maximum allowable number of digits.

Too few fractionals to the right of the decimal point.
ACTION: The field does not contain the minimum number of digits to the right of the
decimal point. Select the correct option and refer to the Message Generation (Section 4) Help
text function for the minimum allowable number of digits.

Too few integers to the left of the decimal point.
ACTION: The field does not contain the minimum number of digits to the left of the decimal
point. Select the correct option and refer to the Message Generation (Section 4) Help text
function for the minimum allowable number of digits.

Too many integers to the left of the decimal point.
ACTION: The field contains more digits to the left of the decimal point. Select the correct
option and refer to the Message Generation (Section 4) Help text function for the maximum
allowable number of digits.

Unable to distinguish bound of first part.
ACTION: This field contains more than one variable length partition in the data item. Field
contents cannot be analyzed. Select the correction option and refer to the JAMPS Help text
function for correct format.

CMP SUM VER. 1.0/1.1
2/20/97

64

Usage: GenDraft[-v][inputfile]
ACTION: The syntax of the command has been incorrectly entered. Reference the User's
Manual for the correct syntax.

Usage: mtfval[-vo][outputfile][inputfile]
ACTION: The syntax of the command has been incorrectly entered. Reference the User's
Manual for the correct syntax.

USMTF MSGID not found.

ACTION: A message has been received in error. Notify originator to resend the
message.

Validation logic code is bogus.
ACTION: Unknown elemental/composite or logic data exists in the field and cannot be
validated. Select the correct option and refer to the Message Generation (Section 4) Help text
function for correct format.

3.10 QUERY LANGUAGE SYNTAX

The query grammar can be summarized by the BNF notation listed below, in which the following
notational conventions are observed:

a. [...] denotes 0 or 1 occurrence of contents
b. {...} denotes 1 or more occurrences of contents
c. | denotes alternatives
d. terminals are denoted using bold typeface as shown
e. <non_terminals> are denoted using the less-than and greater-than symbols as shown.

 <query>::=[{<optional_clause>}]

<select_clause>[{<optional_clause>}]from_clause>
[{<optional_clause>}];|[{<optional_clause>}]<from_clause>[
{<optional_clause>}]<select_clause>[{<optional_clause>}];
<binary_op>::==|!=|>|<|>=|<=
<blank> ::=a single blank character
<bool_op>::=AND | OR
<cond_expr>::=<cond_expr>[<bool_op><cond_expr>]|

CMP SUM VER. 1.0/1.1
2/20/97

65

(<cond_expr>[<bool_op><cond_expr>])|<condition>
<condition>::=<message_element><binary_op operand>|

(<message_element><binary_op><operand>)|<message_element>
<unary_op>|(<message_element><unary_op>)
<digit>::=<sig_digit>|0
(display_clause> ::=FORMAT <target_format>
<err_clause>: :=VALIDATE<validate_level>
<FF> ::=<sig_integer>/<sig_integer>
<field_id> ::=.<sig_integer>
<from_clause>::=FROM<msg_expr>
<integer> ::={ <digit>}
<legal_char> :=<letter>|<digit>|<USMTF_special_char>|<pattern_char>|blank>
<legal_msgid>: :=<USMTF_msgid>|*
<legal_setname> ::=<USMTF_setid>|*
<letter> ::=A|B|...|Z
<literal> ::= " {<legal_char>} "
<message_element>: ::=[{<seg_id>}][<set_id>[<field_id>]]
<message_element_list> ::=<message_element>[{,<message_element>}]
<msg> ::=DTG<binary_op><literal>|MSGID=<literal>|

MSGID !=<literal>|ORIG=<literal>|ORIG !=<literal>
<msg_expr> ::=<msg_expr>[<bool_op><msg_expr>]|(<msg_expr>[<bool_op><msg_expr>])|<msg>

<number> ::=<integer>|<real>
<operand> ::=<message_element>|<literal>|<number>|<FF>
<optional_clause> ::=<within_clause>|<where_clause>|<display_clause>|<err_clause>
<pattern_char> ::=*|%
<real> ::=[<integer>].<integer>|<integer>.[<integer>]
<seg_id> ::=[<legal_setname>]|[<sig_integer]|[]
<set_id> ::=<legal_setname>|(<sig_integer>)
<select_clause> ::=SELECT<message_element_list>
<sig_digit> ::= 1|2|...|9
<sig_integer> ::=<sig_digit>[{<digit>}]
<sig_legal_char> ::=<letter>|<digit>|<USMTF_special_char>
<target_format> ::=TEXT|JAMPS|ERRORS|TABLE|REPORT
<unary_op> ::=[!]EXIST
<USMTF_msgid> ::=<sig_legal_char>[{<legal_char>}]
<USMTF_setid> ::=<sig_legal_char>[{<legal_char>}]
<USMTF_special_char> ::=.|,|:|-|/|(|)|?
<validate_level> ::=NONE|EXTRACTED|MESSAGE|ALL
<where_clause> ::=WHERE<cond_expr>
<within_clause> ::=WITHIN<seg_id>[{<seg_id>}]

CMP SUM VER. 1.0/1.1
2/20/97

66

3.11 SHELL SYNTAX

The shell description can be summarized by the BNF notation listed below, in which the following
notational conventions are observed:

a. [...] denotes 0 or 1 occurrence of contents
b. {...} denotes 1 or more occurrences of contents
c. | denotes alternatives
d. terminals are denoted using bold typeface as shown
e. <non_terminals> are denoted using the less-than and greater-than symbols as shown.

 <shell> ::=[{<comment>}] [<defines>]{[{<comment>}]{<scope>}

[{<comment>}]}
<JQL_statement> ::=As formalized in Section 5.3
<begin> ::=<default_begin>|<defined_begin>
<begin_define> ::=#define start <defined_begin>;
<comment> ::=//[{<printchar>}]|/*[{<printchar>}]*/
<default_begin> ::={
<default_end> ::=}
<defined_begin> ::=<printchar>,except/and*
<defined_end> ::=<printchar>,except/and*
<defined_output> ::=PRINTER|SCREEN|"<text>"
<defines> ::=<begin_define>|<end_define>|<begin_define><end_define>|

<end_define><begin_define>
<end> ::=<default_end>|<defined_end>
<end_define> ::=#define end <defined_end>;
<output_define> ::=#define output<defined_output>;
<printchar> ::=any printable character
<scope> ::=[<defined_output>]<begin>[<text>][JQL:<JQL_statement>]

[<text>]<end>
<text> ::={<printchar>}

CMP SUM VER. 1.0/1.1
2/20/97

67

4 OUTBOUND MESSAGE PROCESSING

4.1 OVERVIEW

This section of the user's manual is designed to help you use the Message Generation Module.
This paragraph is designed for users with varying degrees of message preparation and computer
experience. Users of all experience levels should read through the rest of this section. After this
overview, a plan for using the rest of the manual is presented, based on your level of experience.

This overview consists of the following subdivisions:

a. "How to Use This Section" describes what is contained in each subdivision of this
section of the user's manual, along with a number of terms and conventions with which
you should be familiar to use this manual most effectively.

b. "What is the Message Generation Module" explains formatted text messages and
how they are created using this module.

c. "What is New About the Message Generation Module" gives an overview of the
features, and introduces the graphical user interface.

d. "What to do Next" provides a game plan to follow for using the manual according to
your experience level.

e. "References and Standards" is a list of sources for more information about message
preparation.

4.2 HOW TO USE THIS SECTION

Detailed information on all functions and options are provided in Section 4.11 Tutorial -
Preparing and Editing a Message. This paragraph explains the typographical conventions used in
this section and explains what can be found in the rest of the manual.

4.2.1 Typographical Conventions

This section uses the following typographical conventions in the text to highlight important points
and to distinguish user inputs from system output:

a. Button labels, menu names, menu options, dialog names, and data entry field labels are
shown in Helvetica

CMP SUM VER. 1.0/1.1
2/20/97

68

b. Specific keys on the computer keyboard are identified by their key label in uppercase
letters set in HELVETICA typeface. For example, the return key is denoted as
RETURN.

c. Characters that must be entered by the user are shown in bold Courier typeface.
d. indicates that the steps that follow use the keyboard as the input device.
e. indicates that a toolbar button can be used to carry out an action.
f. For Your Information: A note like this supplies additional information or serves to

clarify a point.

4.2.2 Active Functions

The outbound message processing software is in an evolving product, with some functionality not
yet incorporated into this version of the software. Functions that are not practicable are noted by
1) function not occurring, 2) Pull-down menu options not operational ("grayed out"), or 3) a
dialog box informing user that function is not implemented.

4.2.3 Contents of this Section

The rest of this section is divided into seven major paragraphs described briefly below.

a. "Installing and Configuring the Message Generation Module" (See Appendix A).
b. Paragraph 4.7: "Graphical User Interface" provides hands-on instructions for using

the program interface.
c. Paragraph 4.8: "Main Displays and Help System" describes the two main displays

used in the program and gives step-by-step instructions for using the help system.
d. Paragraph 4.9: "Tailoring Addresses, Originators, Drafters, and Releasers" explains

how to use addresses effectively.
e. Paragraph 4.10: "Tutorial - Preparing a Message" provides step-by-step instructions

which explain how to perform the basic functions of the Message Generation module.
f. Paragraph 4.11: "Advanced Features" explains the more advanced features, including

customizing the program, message restoration, and importing/exporting messages.

4.3 WHAT IS THE MESSAGE GENERATION MODULE?

The Message Generation Module is a computer-based program that provides tools to aid in the
preparation of formatted text messages such as MTF messages. It provides for creating and
editing formatted text messages. The system can accommodate all messages in the USMTF

CMP SUM VER. 1.0/1.1
2/20/97

69

standard as well as other agreed-upon message standards which conform to the MTF format
rules. Message standards may be customized to meet system requirements. The system also
supports plain language address databases for message addresses but prefers to access and
retrieve such data from a system level table.

4.3.1 Message Generation Module System Limits

TBD The total number of saved messages the program will handle

TBD The number of lines per free text set allowed

TBD The total number of plain language addresses allowed in the ADR file

TBD The number of TO and/or INFO sets allowed in the header message (for
transmission only)

TBD The total number of routing indicators allowed in any one AIG.

4.4 WHAT IS NEW ABOUT THE MESSAGE GENERATION MODULE

This module offers a “user friendly” user interface (GUI) which is capable of processing either
Character Oriented Messages (COM) or translated Bit Oriented Messages (BOM). Furthermore,
the CMP is capable of distinguishing the type of message, translating the data as required, and
performing message generation or parsing of both types of messages from a single message data
definition table. The user is no longer required to remember commands to perform tasks because
all the commands needed can be found in menus and dialog boxes. Through simple point-and-
clicks procedures using the mouse, a formatted text message or message which will be translated
into a Bit Oriented Message can be created in a manner similar to using a word processor. In
addition, on-line reference materials provide rules for creating formatted text messages, and a help
system located at the bottom of each message template is available to assist users.

4.5 WHAT TO DO NEXT

The following paragraphs offer suggested steps for users of varying levels of experience.

a. Users Experienced with Message Editors

 Even though it is not required to relearn the task of message preparation, you may
need to learn how to use the Message Generation application. By following the steps
below, you will be able to transfer smoothly your existing knowledge of message
preparation.

(1) If the Message Generation Module is not already installed, follow the instructions,
in Appendix A, to install and configure the module.

CMP SUM VER. 1.0/1.1
2/20/97

70

(2) Read through Paragraphs 4.7 and 4.8, and perform the examples provided using a
computer. This will give hands-on experience using the new CMP GUI.

(3) Try to perform the tasks in the tutorial in paragraphs 4.9 and 4.10. If the steps of
the tutorial are too detailed, try performing the tasks without the manual, and refer
back to it when problems are encountered.

(4) Skip paragraphs 4.11 and 4.12 for now. These paragraphs will be useful later if it
is necessary to perform more advanced tasks or if questions arise about a specific
feature.

b. Users Experienced with Graphical User Interfaces

 Since GUIs are already familiar, the user should not have much difficulty learning the
module interface, which uses all the common GUI elements. Knowledge of message
preparation, however, is necessary. It is suggested that the following steps be
followed.

(1) If the Message Generation Module is not already installed, follow the instructions,
in Appendix A, to install and configure the module.

(2) Skim through paragraph 4.7, paying close attention to the parts on mnemonics and
keyboard accelerators. In paragraph 4.8, read about the two main windows used
in the module and the On Line Help System. Open the MTF messages window in
the Help menu to read about formatted text messages.

(3) Skip paragraphs 4.11 and 4.12 for now. These sections will be useful later if it is
necessary to perform more advanced tasks or if there are questions about a specific
feature.

c. Users Experienced with Message Editors and GUIs

 This manual is a good reference for the user when trouble occurs. The following steps
will ease the transition from a previous message preparation application to the
Message Generation Module.

(1) If the Message Generation Module is not already installed, follow the instructions
in Appendix A to install and configure the module.

(2) Skim through paragraph 4.7, paying close attention to the parts on mnemonics and
keyboard accelerators. In paragraph 4.8, read about the two main windows used
in the module and the On Line Help System. Open the MTF messages window in
the Help menu to read about formatted text messages.

CMP SUM VER. 1.0/1.1
2/20/97

71

(3) Try to perform the tasks in the tutorial in paragraphs 4.9 and 4.10. If following
the steps of the tutorial is too detailed, try performing the tasks without the
manual, and refer back to it when problems are encountered.

(4) Skip paragraphs 4.11 and 4.12 for now. These sections will be useful later if there
is a need to perform more advanced tasks or if questions arise about a specific
feature.

d. Users New to Message Editors and GUIs

 This manual assumes no prior knowledge of the Message Generation application. The
following steps will lead you through the process of message preparation, while
explaining the necessary computer conventions.

(1) If the Message Generation module is not already installed, follow the instructions
in Appendix A to install and configure the module.

(2) Read through paragraph 4.7, and perform the examples provided using a
computer. These examples will give hands-on experience using the new interface

(3) Follow the Tutorial in paragraphs 4.9 and 4.10 to learn step-by-step how to create
a message using the Message Generation module.

(4) Skip paragraphs 4.11 and 4.12 for now. These sections will become useful later if
it is necessary to perform more advanced tasks or if there are questions about a
specific feature.

4.6 REFERENCES AND STANDARDS

The following references should aid you in the preparation of messages:

MIL-STD-6040, U.S. Message Text Formatting (USMTF) Program

Joint User's Handbook for Message Text Formats (JUH-MTF), AFP 102-2, DA PAM 25-7,
JTC3AH 9000, OPNAV-P-942-1-86, NAVMC 2800, Revision 4.0, dated 1 October 1991.

4.7 GRAPHICAL USER INTERFACE

4.7.1 Overview

This section will explain the GUI used by the Message Generation module. The interface follows
the Motifâ GUI standard. This section contains the following subdivisions:

CMP SUM VER. 1.0/1.1
2/20/97

72

"Getting Started" covers the basics of using the mouse, windows, and buttons. Each topic
is followed by an example to give you hands-on experience using the module.

"Selecting a Message" explains how to select a message from the Outgoing Message
Window.

"Choosing Commands from a Menu" explains the steps involved in using the mouse to
open menus and select commands from them.

"Working with Windows" covers all that you need to know about windows to use the
program.

"Using Scroll Bars" explains what a scroll bar is and how to use it.

"Using Dialog Boxes" explains what a dialog box is and the elements that are commonly
found in the dialog boxes.

4.7.2 Getting Started

To use the Message Generation Module you must ensure that the system is set up properly, see
Appendix A. Use of a mouse or other pointing device is supported.

a. Launching the application

The Message Generation Module will be launched in accordance with the system into which it
is integrated. As a stand-alone module, launching is accomplished in accordance with
Appendix A.

b. Point and select

This module has a GUI, which means that you manipulate objects on the screen by using the
mouse to "Point and Select" items. For example, to "open a message," first "point and click"
the message to select it, then "point and select" the OKAY button to open the selected
message. All operations performed use this "point and click" method.

c. Using the mouse

The Message Generation Module uses a graphical selection device called a mouse for some
user input. When you move the mouse, a cursor on the screen moves in the same way.

(1) For best control, hold the mouse in your hand with your fingers close to the mouse
buttons and with the cable pointing directly away from you.

CMP SUM VER. 1.0/1.1
2/20/97

73

(2) Watch the screen while you move the mouse on the mouse pad next to the keyboard.
Every move that you make with the mouse moves the pointer or arrow on screen in
the same direction.

(3) Watch the screen as you lift the mouse from the mouse pad. Notice that the pointer
on the screen does not move. If you run out of room on the pad when moving the
mouse, simply lift the mouse and place it back down on the pad in any spot where
there is more room.

d. Using mouse buttons

The following chart lists conventions defined for the use of the mouse:

Left Button Used for selecting, activating, and
setting the location of the cursor.

Right Button Used for displaying pop-up menus.

Press Pressing the left mouse button and
holding it down while the mouse
remains stationary.

Release Releasing the left mouse button
after it has been held down for an
operation.

Click Pressing and then releasing the
left mouse button in quick
succession.

Double Click Clicking the left mouse button
twice in quick succession.

Drag Moving the mouse while pressing the
left mouse button.

e. Pointer shapes

In this module, the mouse pointer takes on different shapes, depending on where on the screen the
pointer is located and what actions are possible. The table that follows describes the various
cursors used and when they occur. Windows will be explained later. For now, think of windows
as the work area available for a particular task.

CMP SUM VER. 1.0/1.1
2/20/97

74

4.7.3 Choosing Commands from Menus

The various conventions used in menus are described below. Menu selections are the principal
means by which you communicate with the system.

"Cascading Menu Indicator" is a triangle pointing to the right. When a menu item with a
cascading menu indicator is highlighted, an additional menu is displayed to the right of the
selected menu item (a cascading menu).

"Dialog Box Indicator" is three dots (e.g., Delete...) following a menu item. A dialog box
will be displayed upon selection of the item. The dialog box will allow you to make choices
about how you would like the command to be carried out. Items with no dots produce an
immediate action when selected but in some cases, the program asks for confirmation before
continuing.

"Mnemonics" are used to navigate through menus using only the keyboard. Each mnemonic
character is underlined in the menu title or menu item. In this program, all menus as well as
the titles of pull-down menus on the menu bar have mnemonics associated with them.

"Accelerator Key" is a key or key combination that invokes a command regardless of cursor
location. Accelerators are most commonly used to activate menu items. The accelerator keys
are displayed to the right of menu items. Sometimes the accelerator key is a combination of a
letter and the Meta key on yours keyboard. On some keyboards the Meta key is labeled with
a diamond.

Along the top of a main window, in the menu bar, are the titles of several menus. A module
menu can be seen in the following figure.

a. To choose a menu command

(1) Move the mouse pointer to the menu title File and click the left mouse button.

Pressing the mouse button with the pointer on a menu title highlights the title, and a pull-down
menu appears. This is called "pulling down" a menu. When the mouse button is released, the
menu remains pulled down. Menus contain items that execute commands or open dialog
boxes.

(2) Select the menu items from the menu bar by clicking on the menu item of your choice.

To close a pull-down menu without making any choice, move the pointer off the menu and
click the left mouse button. The pull-down menu will close and the highlighted menu title will
return to normal.

CMP SUM VER. 1.0/1.1
2/20/97

75

For Your Information: There is a second method of selecting an item from a menu. It is
similar to the method described above except that you keep the mouse button pressed
between steps 1 and 2. To select a Menu item using this method, press the left mouse button
on the menu title, drag the cursor to the menu item of your choice, then release the mouse
button.

b. Mnemonics

All menus have mnemonics to support users who do not have a mouse or would prefer not to
use a mouse. A mnemonic is a single character that provides a quick way to make a selection
from the keyboard. In this program, all menu items, as well as the titles of pull-down menus
on the menu bar have mnemonics associated with them. Each mnemonic is a single underlined
character in the menu title or menu item. It is often the initial letter of the selection. When an
initial letter cannot be used, as in the case where two selections begin with the same letter,
another letter in the selection name is chosen.

To open a menu using the keyboard mnemonic, press the ALT key (on SUN platform this is a
meta key) and the underlined mnemonic letter for that menu simultaneously. The menu will
be opened, and any selection in that menu can be made by directly typing the appropriate
mnemonic letter for that selection. Note that the ALT key need not be pressed to use a
mnemonic once the menu is open.

To select a menu item (without using the mouse)

(1) While holding down the ALT key, press F. This pulls down the menu, showing you
the contents.

(2) Press S.

 This executes the Save command.

 For Your Information: This two-step process of opening a menu and selecting a
menu item is convenient if you need to search for a menu item. However, if you
already know which command you want, using accelerator keys is quicker.

c. Accelerator keys

Accelerator keys are shortcut keys that allow you to execute a command by pressing a key
combination, usually the CONTROL key and the first letter of the command. A difference
between mnemonics and accelerators is that only accelerators can be activated without first
opening a menu.

CMP SUM VER. 1.0/1.1
2/20/97

76

Action Mnemonic Accelerator
Address List (PLA) A ----
Append Field ---- ----
Application Preferences A ----
Clear e <Ctrl-R>
Close C <Ctrl-W>
Context-Sensitive Help C <Shift-Help>
Copy C <Ctrl-C>
Customize u ----
Cut t <Ctrl-X>
Delete D ----
Deselect All ---- <Ctrl-\>
Down One Level D <Meta-J>
Drafter List D ----
Exit X <Ctrl-Q>
Export To E ----
Field F ----
Field Group G ----
Group List G ----
Header H <Meta-H>
Header List L ----
Help Overview H F1
Import From I ----
Insert Field F ----
Insert Set S ----
Interface Help J ----
Maximize X <Meta-F10>
Message Disk D <Ctrl-D>
Minimize N <Alt-F9>
Move M <Alt-F7>
New Address N <Ctrl-A>
New DD173 Header ---- ----
New JANAP Header H <Ctrl-N>
New [Message Standard] N ----
Next Field Alternate A <Meta-A>
Open O <Ctrl-O>
Originators O ----
Paste P <Ctrl-V>
Preview v <Meta-I>

CMP SUM VER. 1.0/1.1
2/20/97

77

Print P <Ctrl-P>
Printer Setup P ----
Reformat m ----
Releaser List R ----
Remove Header ---- ----
Repeat R cascade options
Restore Message R ----
Save As A ----
Save S <Ctrl-S>
Segment m ----
Select All ---- <Ctrl-/>
Set S ----
Show Field/Set/Message Errors F ----
Show Field Codes C <Ctrl-F>
Show Field Maps M ----
Show Segment Bars B ----
Show Sets Expanded S ----
Spelling L <Ctrl-L>
Structural Errors S ----
Templates T ----
Tutorial T ----
Undo U <Ctrl-Z>
Up One Level U <Meta-U>
USMTF Messages Browser U ----

To use an accelerator key to save, press S while holding down the CONTROL key. This
executes the Save command.

d. Cascading menus

A cascading menu is a sub-menu that pops up when a menu item is highlighted.

4.7.4 Working with Windows

A window is an enclosed work area for a particular task. This module uses two main windows,
which are explained in paragraph 4.9.1. Windows can be moved, resized, scrolled through, and
closed. Multiple windows can be displayed on the screen at once, allowing you to refer to two
windows while keeping both in view. To use a window, it must be active. When more than one
window is open at once, the window that lies on top of all others is the active one. To change the

CMP SUM VER. 1.0/1.1
2/20/97

78

active window, just click on any part of the window desired or select the desired window from the
Windows menu.

a. To resize a window:

(1) From the Help menu, select the Interface Help menu item. This is just to give you
a window to use for this example. The techniques presented here can be applied to
all windows.

(2) Move the pointer to the lower right corner of the Help window. The cursor will
change from the pointer to a window resize cursor.

The arrow cursor indicates that the window can be resized. The window can only be resized
when the cursor is an arrow.

For Your Information: If the Help window suddenly disappears, it is probably because you
clicked on the Message Edit Window, bringing it to the front. To get the help window back,
perform the first step again.

(3) While the cursor is still an arrow, press the mouse button. While the button is
pressed, move the mouse.

You are now re-sizing the window. As you move the mouse around, only the outline of the
window will stretch.

(4) Release the mouse button.

 When the mouse button is released, the window is resized to the shape of the
outline you created.

b. To move a window:

Drag the title bar of the window to its new location

c. To make a window active:

Click on any part of the window. If no parts of the window are showing on the
screen, choose the window from the Windows menu.

d. Window control menu

CMP SUM VER. 1.0/1.1
2/20/97

79

 The Window Control menu is used to display a list of window actions. The Window
Control menu button is located in the upper left corner of most windows. Pressing the
window menu button activates the menu and presents all or some subset of the
following options: Restore, Move, Size, Minimize, Maximize, Lower, and Close.

(1) To open the window control menu, press the upper left corner of the window.

Restore The Restore option restores the minimized or maximized window to its previous
size and location.

Move The Move option moves a window around the work space.

Size The Size option changes the height and width of the window in the direction
indicated by the pointer.

Minimize The Minimize option changes a window into an icon, which is a small
pictorial representation of the window.

Maximize The Maximize option enlarges a window to its maximum size.

Lower The Lower option moves a window behind all other windows displayed on the
screen.

Close The Close option closes a window and removes it from the workspace.

(2) To close a window:

Select Close from the Window Control menu.

 For Your Information: Double clicking on the Window Control menu button
closes the window.

4.7.5 Using Scroll Bars

Windows often cannot show all of the information that they contain on screen at once. The scroll
bar is used to view the parts of the window that will not fit on the screen. Scroll bars are only
active when there is more information than can fit in the given area.

a. To scroll through text:

CMP SUM VER. 1.0/1.1
2/20/97

80

Resize the help window to a smaller size, so that all of the text is no longer in the
window.

b. To move line-by-line:

Click the upper or lower stepper arrows. Notice that more text comes into view. This
is called scrolling.

c. To move page-by-page.

Click in the trough above or below the slider as pictured above. Notice that the text
scrolls more rapidly.

d. To move quickly to the beginning or the end:

Click and drag the slider up or down.

 For Your Information: The slider moves as you scroll through the message.
When the slider is at the top of the trough, you are at the beginning of the
message; when the slider is at the end of the trough, you are at the end of the
message.

4.7.6 Paned Windows

A paned window is a window that contains areas that can be resized. The window is part of the
Message Edit window. This paned window contains an upper and lower pane, separated by a
horizontal split bar.

To resize a pane in a paned window:

Click on the horizontal split bar button and drag the bar up or down to resize the panes as
needed. Notice that the smallest size the header pane (the upper pane) can achieve is
one line.

4.7.7 Using Dialog Boxes and Controls

A dialog box is a specialized type of window that simply gives you alternative choices. For
example, when the menu item Print... is chosen, there are some preferences that you can select.

a. To see the Print Message dialog box, select the Print menu item

CMP SUM VER. 1.0/1.1
2/20/97

81

From the File menu, in the Message Edit Window.

The following buttons are common to many dialog boxes:

(1) OK Button The OK button applies the settings that were changed and closes
the dialog box. Sometimes, as in the Print dialog box above, an action button is
substituted (e.g., the word Print).

(2) Cancel Button The Cancel button resets settings to their states before the dialog
box was opened, then closes the dialog box.

(3) Help Button The help button opens a help topic for the current dialog box.

For Your Information: Some dialog boxes contain default buttons. They are
surrounded by a shadow. The Print button, shown above, is an example of a default
button. These buttons can be activated by pressing the RETURN key, as well as by
clicking the mouse.

b. Check boxes

 Check boxes are used to toggle items "on" or "off." Multiple options in the check
button group are allowed to be "on" simultaneously.

To select items in a check box:

Click on the squares to the left of all of the items desired to be toggled on.

For Your Information: You may select as many check box items as you need. Clicking on a
check box toggles it on and off. To turn a check box off, click on it.

c. Radio or option buttons

 Radio buttons (also called option buttons) are also used to toggle items 'on' and
'off.' Unlike check boxes, however, only one item may be selected from a
grouping of radio buttons. Radio buttons work like buttons on a car radio. You
can only choose one radio station at a time.

 To select an item from a group of radio buttons:

(1) Click on the diamond (or circle) to the left of the item desired. This will toggle
the selected item on, and will toggle the rest of the radio buttons in that group
off.

CMP SUM VER. 1.0/1.1
2/20/97

82

(2) To close the Print Message dialog box without printing, click on the Cancel
button.

d. Data entry fields

 A data entry field is an area in a window where text can be entered by the user.

 To enter data into a data entry field:

(1) From the Address Menu, select the menu item New Address...

 This will open the New Address dialog box to use as an example for text entry.

(2) Position the cursor over the darker area to the right of the Long Address:
field label.

This moves the cursor to where you want to insert text.

(3) While the cursor is still an I-beam, click the mouse button.

 A flashing vertical bar can now be seen in the Long Address: field. Any
typing you do now will be inserted under the flashing bar.

(4) Now enter the address HQ 1912 CSGP Langley AFM VA

 To delete any unwanted characters, use the BACKSPACE key.

 For Your Information: Text fields that do not have a shadowed box around
them are "display only." The system places text in these fields for you to read,
but you cannot edit the text. When the cursor is moved over a "display only"
text field, the cursor will not change to an I-beam.

e. To copy field data: ((This function is not implemented at this time))

(1) To select the text to be copied, drag the cursor over the text. The text is now
highlighted, indicating that it is selected.

(2) From the Edit menu, select the Copy item. This copies the selected text to a
buffer.

(3) Click on the text field to which you want to copy the text.
(4) From the Edit menu, select the Paste item. This copies the text from the

buffer to the current field.

CMP SUM VER. 1.0/1.1
2/20/97

83

f. To move field data from one field to another: ((This function is not implemented at
this time))

(1) Select the text to be moved by dragging the cursor over the text. The text is
now highlighted, indicating that it is selected.

(2) From the Edit menu, select the Cut item. This removes the highlighted field
from the current field and places it in a buffer.

(3) Click on the text field to which you want to move the text.
(4) From the Edit menu, select the Paste item. This copies the text from the

buffer to the current field.

g. Drop down combo boxes

 A drop down combo box is a combined text entry and menu field. A menu
appears when the triangle graphic button to the right of a field is pressed. Menu
items can be selected by dragging the cursor to the desired item. The menu item
then replaces the text in the field. Sometimes you can also enter data directly into
the text box after clicking in the field to make it active.

 To use a drop down combo box:

(1) Click on the triangle graphic button with the left mouse button, which opens
the drop down list.

With the left mouse button, drag the cursor to the item desired.

Select Item and move out of box. Item is now selected.

For Your Information: The menu can also be posted (i.e., opened) by clicking once on the
triangle button.

h. Tool Bar - Message Edit Window has push buttons for:

 Save the current message.

 Print the current message.

 Undo the last operation. ((This function is not implemented at this time))

 Cut and store selection into buffer. ((This function is not implemented at this
time))

 Copy selection into buffer. ((This function is not implemented at this time))

CMP SUM VER. 1.0/1.1
2/20/97

84

 Pastes contents of buffer into current location. ((This function is not implemented
at this time))

 Repeats selected item.

 Displays message header.

 Toggles segment bars on and off.

 Toggles field maps in the field on and off. ((This function is not implemented at
this time))

 Shows message field and set errors and shows structural errors.

 Opens spelling dialog box. ((This function is not implemented at this time))

4.8 MAIN DISPLAYS AND HELP SYSTEM
NOTE: The On Line Help function is not available at this time.

4.8.1 Overview of Main Displays and Help System

Message Generation Main Displays describes the two main windows that you will use with the
program.

Using the On Line Help System explains how to use the help system provided with the Message
Generation Module.

4.8.2 Main Displays

The Message Generation application has two main windows, the CMP User Interface (CUI)
Window, and the Message Edit Window. The CUI is the window used for message management,
while the Message Edit Window is used for editing the contents of individual messages.

a. CMP User Interface

(1) Menu Bar The Menu Bar contains a list of the following menus, each of which
contains a list of commands:

The File menu contains a list of options that affect messages in their entirety.

File Options include the ability to generate new messages and new Auto-Fill messages.
Messages may be saved and/or archived from the pull down window. Messages may be
printed from this option.

The Message menu enables editing and reviewing of messages.

CMP SUM VER. 1.0/1.1
2/20/97

85

(2) Tool Bar The tool bar provides quick access to commands that are frequently used.
The tool bar is positioned horizontally at the top of the program screen, just below the
menu. When a push button from the Tool Bar is clicked on, the action represented by
that push button occurs, such as;

Launching the message generation window.

Creating messages from data taken from a database from predefined conditions.

Saving the message.

Printing the message.

Deleting messages.

Previewing the message in text form.

Edits selected message using the message generation window.

Accesses message address header.

Sends messages to communications module for retransmission.

Forwards messages to addresses.

Enables user to reply to selected messages.

Filters messages based upon predetermined criteria.

Attaches memorandum to saved messages.

(3) Incoming This section provides a list of messages
Messages List that have been received.

(4) Temporary Messages This section provides a list of messages
List currently being reviewed or edited.

(5) Outgoing Mes- This section provides a list of messages
sage List that have been released to the communi-

cations module.

(6) Column Headings "NAME" displays the message identification.

"Source" displays the message originator.

"Destination" displays the message destination. If message has more than one destination,
the number of destinations will be displayed in () and the 1st destination will be displayed.

CMP SUM VER. 1.0/1.1
2/20/97

86

"DTG" displays the message date-time-group.

"Class" displays the message classification.

"Precedence" displays the message handling precedence.

"Status" displays message status (e.g., read or unread) the scroll bar becomes active and you
can scroll the message list. Horizontal message bars allow you to see text that is wider than
the column width.

b. Message Edit Window

(1) "Menu Bar" contains a list of menus, each of which contains a list of commands.
(2) "File menu" contains a list of options that affect messages in their entirety.
(3) "Edit menu" provides a list of options for cutting, pasting, copying, repeating, and

inserting text, fields, sets, and segments. It also contains header editing functions.
(4) "View menu" allows you to show segment bars, expanded sets, and field maps in the

fields. It also allows the user to toggle to the next alternate field and to show field
codes.

(5) "Tools menu" allows you to show errors, spell-check, and restore messages. This
menu also allows the user to find, replace, and set preferences.

(6) "Windows menu" displays the titles of windows that are currently open in the
application. (NOTE: NOT AVAILABLE AT THIS TIME).

(7) "Help menu" provides access to the different types of on-line help information.
(NOTE: NOT AVAILABLE AT THIS TIME).

(8) "Tool Bar" gives quick access to commands that are used often. When a push button
from the Tool Bar is clicked on, the action represented by the push button takes place.
 From left to right, the push buttons are Save, Print, Preview, , Repeat, Edit, Header,
Segment Bar, and Error/SNVO_ID. For a complete explanation of each push button,
see paragraph 4.7.9. (NOTE: THE UNDO, CUT, COPY, PASTE, FIELD MAP,AND
SPELLING ARE NOT AVAILABLE AT THIS TIME).

(9) "Message Header" displays the header information, if any, for the current message.
(10) "Message Body" displays the segments, sets, fields, and field data of the current

message.

c. Use of Color

CMP SUM VER. 1.0/1.1
2/20/97

87

Color is used to highlight parts of the message and to add meaning to status lines and set
identifiers. Colors used in message templates are shown below.

Color Usage
Red Mandatory sets and fields, and

conditional mandatory sets. The error
indicator in the status error.

Green Operationally determined sets and
fields, conditional sets, unclassified
message indicator.

Yellow Conditional set identifiers

Field turns Gray Background color of fields with errors

Green In the help system, clicking on green
underlined text will display a related
help topic.

Green In the help system, clicking on text
like this will show a pop-up window with
the definition of the word(s) selected.

Note: Fields will appear black until tabbed into; then they change to red or green based on the
occurrence category (mandatory or optional) of the field.

d. Set/Field/Command/Error Status Area

The status area provides information about the active field, set, and command (if cursor is in
the menu area).

(1) "Set ID" displays the color-coded set identifier of the active set.
(2) "Set Flags" displays the color-coded single letter set description.
(3) "Field Flag" displays the color-coded single letter field description of current field.
(4) "Error Flag" displays a single letter indicating whether the current field contains an

error.
(5) "Set Name" displays the full set name.
(6) "Field Description" displays the field name.

Character Occurrence Category
O Operationally Determined Field

(Optional)

CMP SUM VER. 1.0/1.1
2/20/97

88

M Mandatory Field
C Conditional Field
R Repeatable Field
Alt Alternate Content Field
E Error in Field
O Operationally Determined Set

(Optional)
M Mandatory Set
C Conditional Set
R Repeatable Set

(7) "Set Number" displays the number of the set currently displayed at the top of the
message window.

(8) "Error Information" displays the current field error.
(9) "Field Range Information" displays the field map and range information of current

field.
(10) "Element Selected" displays the part of the current message that is selected.

 One very important part of the user interface is the help system. Much of the
information contained in this user's manual is also contained in the help system.

4.8.3 Using the Help System (NOTE: NOT AVAILABLE AT THIS TIME.)
The Message Generation Module has a complete on-line reference tool that can be accessed at
any time. The help system is especially useful when information is needed quickly. The help
system contains help on every menu item, dialog box, and window. It also contains step-by-step
procedures for completing most basic tasks in the module. The help windows can be resized and
moved so that you can view the help system while performing your message preparation tasks.
The help system can also be used to get more detailed explanations of fields, sets, and messages.
This information continually updates itself as you move through fields in your message.

a. Getting Help

(1) Most dialog boxes have a Help button. By pressing this button, the Help
system will open to the topic that explains that particular dialog box. Once the
help system is opened, the user can browse through it to find information on any
chosen topic.

CMP SUM VER. 1.0/1.1
2/20/97

89

(2) The help system can also be accessed through the Help menu. Help
Overview gives a summary of the various types of help offered by the help
system.

b. Help Overview

The Help Overview menu item gives a summary of the on-line help system as well as help on
using the help system.

(1) To show the Help Overview

From the Help menu (in either of the program's two main windows), choose Help
Overview.

The help menus are slightly different depending on which main window you are currently
using. The Message edit window has an additional help menu called Real Time Help, which
has context-sensitive help on the message currently being viewed.

(A) “Real Time Help” opens a window that gives field-, set-, and message-
dependent help on the active field. The window will remain on top of all
other windows, even when other windows are activated. This type of
window is referred to as a floating window.

(B) “User Interface Help” contains help concerning interface elements and
conventions used by the Message Generator.

(C) “Tutorial” presents a list of step-by-step procedures for message
preparation.

(D) “USMTF Messages” provides help on USMTF message format rules,
including general instructions on message preparation. USMTF Message
Help also contains the USMTF Message Browser, which contains the
purpose of each of the message templates installed in the program (this
feature should ultimately be expanded to include all messages supported).

c. User Interface Help

The interface help explains how to use the graphical elements that are part of the program
interface. Interface Help also explains every window that is part of this module.

(1) To show the Interface Help:

CMP SUM VER. 1.0/1.1
2/20/97

90

From the Help menu, choose Interface Help.

 The table of contents of the Interface Help is now shown. Notice that the text is
green and underlined. Clicking on green, underlined text brings the user to the
section being described. If you click on Getting Started, the help system will show
information on Getting Started with using the program.

d. Moving around in Help

Help buttons are located across the top of every window except Help Overview. These help
the user to navigate through the help system by;

display of contents of the help menu item being used,

allowing the user to search for a topic by a keyword,

showing the last topic you looked at,

displaying a list of topics already viewed,

displaying the previous topic in a series of topics,

displaying the next topic in a series of topics.

e. Keeping Help on Top of all other Windows is useful if you need to see the
help as you perform tasks.

To keep help on top:

From the Help menu in the Interface Help window, select Always on Top. A toggle
button to the left of the menu item indicates that the menu item has been selected.

f. Viewing a Message and Help Together

You may want to see the Help Window and the Message window together. To do this, you
may need to resize and/or move the help window.

To resize the help window:

(1) To resize the help window, click and drag the lower right corner of the help window.
For more detailed information about re-sizing a window, see paragraph 4.7.5,
Working with Windows.

CMP SUM VER. 1.0/1.1
2/20/97

91

(2) To move the help window, click on the title bar of the help window and drag the
window to its new location.

g. Scrolling Through a Help Topic

If the information contained in a Help Topic cannot fit on one screen, the scroll bar can be
used to look through the information.

To scroll through the topic line-by-line:

Click on the scroll arrows in the scroll bar.
 To scroll through the topic page-by-page:

Click above or below the scroll box in the scroll bar.

h. Searching for a Help Topic

You can search through the help system quickly by using a keyword search. This feature acts
like an index in a paper manual.

To search for a help topic:

(1) From the Help buttons, select the Search button. This will bring up the search dialog
box.

(2) Type a word or phrase to be searched for into the text box. You can also scroll
through the upper list box of topics.

(3) Press the Show Topics button. This will fill the lower list box with topics that
reference the selected topic.

(4) Select the desired sub-topic from the lower list.
(5) Press the Go To button. This will take you directly to the topic in the help system.

For Your Information: When you are using the program, many of the dialog boxes contain
Help buttons. Pressing the buttons will automatically bring up help on the appropriate topic.

i. Defining and Using Bookmarks

Bookmarks allow the user to put place holders in the help system, making it easier to toggle
between them. This is especially useful for topics referred to often.

To place a bookmark in the topic you are currently using:

CMP SUM VER. 1.0/1.1
2/20/97

92

(1) From the Bookmark menu, select Define.
(2) A dialog box will appear with a suggested Bookmark Name highlighted. To change

the name to something else, type the name you would prefer. Press OK.
(3) The Bookmark will now appear at the bottom of the Bookmark menu.

 To go to a bookmark:

(1) Select the Bookmark name from the Bookmark menu.

 This will bring you to the topic associated with the bookmark. You can also type the
number that corresponds to the bookmark in the Bookmark menu to jump quickly to
the bookmark.

To remove a bookmark:

(1) From the Bookmark menu, select Define.
(2) From the list of Bookmarks, select the Bookmark to remove.
(3) Select the Delete button.

 The bookmark is now removed.

j. Annotating a Help Topic

The annotate option allows you to add your own comments to a help topic.

To add your own comments to a topic:

(1) From the Edit menu, select Annotate.

 A dialog box will pop-up, allowing you to type in text.

(2) Type in your comment.
 (3) Select the Save button.

To see your annotation:

Press the green paper clip next to the title of the help topic.

k. Using Real Time Help

CMP SUM VER. 1.0/1.1
2/20/97

93

Real time help provides help on the particular field, set, or message that is currently being
used. The Real time help changes when moving from field to field, from set to set, and from
message to message. Real time help is shown in a separate window that floats on top of all
other windows. When Real time Help is selected from the Help menu in the Message Edit
Window, the Real Time Help is toggled “on.” Like the status area, this window updates as
you move from one field to another.

To turn on Real Time Help:

(1) Open a Message Edit Window.

(2) From the Help menu (on the Message Edit Window, not within the help system), select
Real Time Help. This toggles the Real Time Help on and off. If you now open the help
menu, you will notice that the toggle button to the left of the menu item Real Time Help
is black, indicating that it is toggled on.

To turn on Field help:

(1) From the toolbar in the Real Time Help window, click on the Field button. This shows
the Field Help in the real time window.

(2) Now click on one field in your message and then tab to another field. Notice that the
Field help changes when you tab into another field, giving you help on the new field.

For Your Information: To get the other types of real time help, press the appropriate button
located across the top of the real time help window. Try pressing the Message , Set,
Example, and Notes buttons to see the kinds of information you get for each of these.

To turn off Real Time Help:

(1) From the Help menu (on the Message Edit Window, not within the help system),
select Real Time Help. This toggles the Real Time Help off (See also paragraph 4.8.3).

l. Opening the Tutorial

The tutorial part of the help system explains the step-by-step procedures for message
preparation.

To open the on-line tutorial:

From the Help menu in the Message Edit Window, select Tutorial. This opens the
contents topic screen of the Tutorial.

CMP SUM VER. 1.0/1.1
2/20/97

94

m. Opening the MTF Messages Help

The MTF Messages portion of the help system provides help on MTF messages format rules,
including general instructions on message preparation. MTF Message Help also contains the
MTF Message Browser (currently focused on USMTF only), which contains the purposes of
the message templates installed in the program.

To open the MTF Messages help window:

From the Help menu in the Message Edit Window, select MTF Messages. This opens the
contents topic screen of the MTF Messages help.

n. Exiting the MTF Message Help

To close the MTF Message help window:

From the File menu in the Help window, select Exit.

4.9 TAILORING ADDRESSES

4.9.1 Overview

"Working with Addresses" explains how to display, add, edit, delete, and group addresses.

"Working with Drafters and Releasers" explains how to display, add, edit, and delete drafters and
releasers. ((This feature is currently partially implemented.))

4.9.2 Working with Addresses

The Message Generation Module is pre-configured to allow you to produce messages
immediately after installation has been completed. However, one can reduce the amount of time
required to produce messages if you further configure the module to meet your specific needs.
This section will show you how to display and add to the list of the addresses.

a. Listing Addresses

 The address contained on your hard drive can be listed and edited.

 To display the list of addresses:

CMP SUM VER. 1.0/1.1
2/20/97

95

(1) From the "Address Menu" choose "Address List (PLA)". The address menu is
available in the Message Edit Window.

This displays the following dialog box, which shows a scrolling list of addresses and groups,
and provides access to address management functions. Groups are listed first in the list,
followed by addresses.

If there are many addresses, the vertical scroll bar can be used to see additional addresses.
The horizontal scroll bars can be used to see information about an individual address that may
not fit in the area provided.

"Long Address" (more commonly known as PLA) is the long address portion of the address.

"Office Symbols" is the office symbols portion of the address.

"Routing" is the routing portion of the address.

"New..." displays a dialog box that allows you to add an address to the list.

"Import..." opens the Import Address PLA dialog box, which allows you to import addresses.

"Edit..." displays a dialog box containing information on the currently selected address,
allowing you to edit a selected address or group.

"New Group" opens the New Group dialog box, which allows you to select addresses to be
included in a group. Groups allow you to send a message easily to a common group of
recipients.

"Delete..." deletes any addresses or groups that are selected.

"Close" closes the address list window.

b. Adding Addresses

 Addresses and office symbols can be added to your address list.

 To add an address:

(1) From the Address List dialog box choose the New button. This displays the
New Address dialog box.

Alternate Method: Another method of displaying the New Address dialog box is to choose
New Address from the Address menu.

(2) Type 1234 ABCD Langley AFB VA, into the Long Address text field.
(3) To get to the next text field, press the TAB key or click in it with your mouse.

CMP SUM VER. 1.0/1.1
2/20/97

96

 The TAB key moves the cursor to the next text field. The tabbing order is from
left to right and then down.

(4) Type the first office symbol ABC, into the Office Symbol text field.
(5) To add the Office Symbol to the address, click on the Add>> button.

To add additional office symbols, repeat the step above. If you make a mistake and
add an incorrect office symbol to the address or want to remove one, highlight the
incorrect office symbol in the scrolling box, then press the <<Remove button.

(6) You can specify one address to serve as the default originator by clicking in the
Set as default originator check box while the address is selected. The address
chosen will be used as the originator for messages unless the program is otherwise
instructed.

The address is now complete. You now have the following options:

"Close" will close the dialog box. If you have not saved recent changes, you will be prompted
to save.

"Save" will save the address.

"Save and Clear" will save the address and clear the fields so you can enter another address.

"Clear" will clear the address fields without saving changes.

(8) For now, if all of the information is correct, press the Save button and the Close
button.

c. Editing Addresses

 Addresses can be edited using the module to add or remove office symbols and also
perform other editing tasks.

 To edit an address:

(1) From the Address menu, choose Address List (PLA)...
(2) In the Address List dialog box, select the address to be edited and choose the

Edit button. This displays the following dialog box is displayed:
(3) This dialog box works in the same way as the New Address dialog box. Use OK

to save changes and Cancel to ignore changes.

d. Deleting Addresses

CMP SUM VER. 1.0/1.1
2/20/97

97

 To delete an address:

(1) From the Address menu, choose Address List (PLA)...
(2) From the Address List dialog box, select the address to be deleted by clicking.
(3) To delete the selected address, press the Delete... button.
(4) The dialog box above will appear. Press OK to delete the address. If a group

name had been selected, the group would have been deleted.

e. Grouping Addresses

 Addresses that are used for a similar purpose can be grouped together using the
Group List... menu item or the New Group button in the Address List dialog box.

 To create a group of addresses:

(1) From the Address menu, choose Address List (PLA)...
(2) From the Address List (PLA) dialog box press the New Group... button.
(3) From the New Group dialog box select the addresses and corresponding office

symbols from the Address and Office Symbol scrolling list to be added to the
group.

Notice that when different addresses are selected, the office symbols change. The office
symbols shown are only those associated with the highlighted address. At this point you can
select certain office symbols associated with the highlighted address to be added to the group.

(4) To select Office Symbols to be added, select the Office Symbols from the Office
Symbols scrolling list.

(5) To add the selections to a group, press the Add button.
(6) Repeat steps 3 through 5 as many times as needed to add the addresses to the

group.
(7) To name the address group, click the Group Name: text box, and type in a

meaningful name for the grouping.
(8) Press the OK button to accept the grouping.

 To remove an address from a group:

(1) From the Addresses Selected for Group scrolling list, select the address to be
removed.

CMP SUM VER. 1.0/1.1
2/20/97

98

(2) To remove the address, press the OK button.

 Notice that the address is no longer in the Addresses Selected for Group
scrolling list.

To remove just an office symbol:

(1) From the Address Selected for Group scrolling list, select the address that
contains the Office Symbol to be removed.

(2) From the Office Symbol scrolling list, select the office symbol to be removed.
(3) To remove the office symbol, press the Remove OS button.

To edit group lists:

(1) From the Address menu, choose Group List

 Alternate Method: From the Address List dialog box, select a group and press
the Edit button.

 The Group List dialog box above will appear. From this dialog box, you can also
create new groups and delete outdated groups.

(2) To Edit a group list, select the group name from the Group Name scrolling list
and then press the Edit button.

This opens a dialog box similar to the New Group dialog box, which works in the same way.
 (See "Grouping addresses" for more information.)

4.9.3 Working with Drafters and Releasers

Drafter and releaser information is needed when creating DD173 forms and headers. Here we
will explain how to enter drafter and releaser information. Later, when the information is needed
to populate headers, you can select the information from a list. The steps are essentially the same
for working with drafters and releasers.

a. Listing Drafters

 The drafters previously added and saved can be listed and edited.

 To see a list of the drafters:

(1) From the Address menu, select Drafter List...

CMP SUM VER. 1.0/1.1
2/20/97

99

 This opens the Drafter List box below.

b. Adding Drafters

 To add a drafter:

(1) From the Address menu, select Drafter List...

 This opens the Drafter List dialog box.

(2) From the Drafter List dialog box, select the New... button.

 This opens the dialog box below.

 The Name/Title field can accept up to 34 characters, and the Office Symbol/Phone
field accepts up to 34 characters.

 The Releaser Dialog box is accessed from the New button on the Releaser List
dialog box. The Releaser dialog box is slightly different from the Drafter dialog
box. It combines the fields Name/Titles and Office Symbol/Phone into one field.
The maximum number of characters that can be entered is 32.

(3) Enter the appropriate information in each field. To continue entering information
about other new drafters or releasers, press Save and then Clear. To save and
close the dialog box, press OK.

c. Editing Drafter Information

 To edit a drafter:

(1) From the Address menu, select Drafter List...

 This opens the Edit Drafter dialog box.

(2) To choose a draft to be edited, select one from the Name list.
(3) From the Drafter List dialog box, select the Edit... button.

 This opens the dialog box below.

(4) Make changes and press OK to save and close the dialog box.

d. Deleting a Drafter

CMP SUM VER. 1.0/1.1
2/20/97

100

 To delete a drafter:

(1) From the Address menu, select Drafter List...

 This opens the Drafter dialog box.

(2) Choose a drafter to be deleted by selecting one from the Name list.
(3) From the Drafter dialog box, select the Delete... button.

 This deletes the drafter selected.

 For Your Information: Editing and Deleting the Releaser Information works
similarly.

4.10 TUTORIAL - PREPARING AND EDITING A MESSAGE

4.10.1 Overview

The functions described in this section are easier to understand if you keep in mind the basic steps
needed to prepare a message, listed as follows:

a. Create a New Message or Open a Saved Message - to compose a new message
or recall an existing message.

b. Edit Field Contents and Fill in Fields - to put required information into the
appropriate fields of the sets, repeating fields as necessary.

c. Edit sets - to modify the structure of the message by repeating or inserting
segments or sets until the set structure matches the desired message structure.

d. Check Spelling - Use the spelling checker to check the spelling (NOTE - This
function not available at this time).

e. Errors in Message - Use the error routines to find any message errors.
f. Address the Message and Output it - Fill out the information on recipients, and

output the message onto paper or disk.

4.10.2 Creating a New Message

The Message Generation Module allows you to use a message template to create a new message,
which can then be tailored. In this example, you will use the MTF GENADMIN template to
create a message.

CMP SUM VER. 1.0/1.1
2/20/97

101

a. To create a new message:

(1) There are two ways to create a new message: a) from the CMP Message Handler
window, select NEW or NEW Button, or b) launch the CMP Message Generator
directly from CMP/JMPS/bin using command jmps <file name>. (NOTE - The
latter method is not for a DII user)
(a) You must fill out a “header” for the message first.

(2) After the message generator is launched, the Empty Message Input file window
will be displayed. From the cascading menu, click on GENADMIN to select it.
Press the open button to open new GENADMIN message template. (Double-
clicking on GENADMIN also executes the command of creating a new
GENADMIN message in the Empty Message Input File).

4.10.3 Editing Field Contents

Once in the message template, you can begin filling out the fields within each set. Fields are the
basic building blocks of a message. They hold all the information contained in the message and
provide format and identification information. To make a field active, click with your mouse in a
field or TAB between fields.

Field Map and Range Character can always be found in the field status area of a message for the
currently active field. Maps and ranges are a combination of letters shown in the example below.
Lowercase letters are used to indicate the data format used in the field. The combination of
characters shows what type of characters can be placed in each character position in the field.

For example, if the field map "1-20ANBS" is displayed in the field status area, the entry contains a
range of 1 through 20 Alphabetic, Numeric, Blank spaces, and Special characters. The table
below explains each of the characters used in a field map.

CMP SUM VER. 1.0/1.1
2/20/97

102

Field Map Character Meaning Possible Characters
A Alphabetic characters (A-Z)

N Numeric characters (0-9)

B Blank spaces

S Special characters .:()-,?/
Note: the colon and forward
slant are only allowed in the
free text sets.

UND Unlimited Text a n b s

. Decimal point

C Coded entry (refer to the help text or Joint
User’s Handbook for more
information)

For Your Information: If you try to enter a "/" in a non-free text set, you will hear a tone
and the character will not be entered.

When editing, the BACKSPACE key, the left and right arrow keys or the mouse can be used to
correct mistakes. The backspace key will erase the character to the left of the cursor and move
the cursor one character to the left. The left and right arrow keys move the cursor from side to
side. Text in a field can be selected with the mouse and commands under the Edit menu applied
to the text.

After the field is completed, use the TAB key to move the cursor into the next field to the right,
or click in it with your mouse using the left mouse button. If you are editing the last field in a set,
the cursor will move to the first field of the next set if the TAB key is pressed. Pressing TAB
while holding down the shift key will move you into the field before (i.e., to the left of) the field
being edited.

As you tab or use the mouse to move out of a field, the program will validate the contents of the
field. To validate the field, it compares what the field contains with the rules that define the
format of the field. If the contents do not fit the rules, a field validation error will be displayed in
the Error Warning field in the status area at the bottom of the message. The field can be
corrected either at this point or at a later time. Fields with errors are highlighted background or
field turns gray to distinguish them from correct fields.

a. Filling in fields

CMP SUM VER. 1.0/1.1
2/20/97

103

 To fill in fields:

(1) Notice that the cursor is blinking in the first field in the EXER set. If the cursor is
not in the first field, click on the first field with the left mouse button to select it.

The cursor's location is shown by the blinking cursor. The cursor indicates where the next
characters will be inserted when you start typing.

(2) Type in the words TextExercise. Then press the TAB key.

 The cursor is now in the next field. The program automatically displays the
entered characters in all uppercase, which is a requirement of the MTF standard.

(3) Type in the words MoreInformation. Then press the TAB key.

 The cursor's location is now in the first field of the next set, which is below the
EXER field. Notice that the cursor is now blinking in this field.

(4) Press the TAB key while watching the bottom of the display.

 The bottom status area displays information about the set you are in on the left and
the field you are in on the right The status area is updated each time you move to
a different set or field (see paragraph 4.8.1 for more information).

(5) Fill in the rest of the message to match the information in the figure below. The
information in the following sections will aid you. Notice that you have filled in all
of the mandatory fields that were indicated by a red box around the field.

b. Using Real Time Help ((NOTE: This function is not implemented at this time))

 Real-time help provides help on the particular field, set, or message that is currently
being used. The Real time help changes when moving from field to field, from set to
set, and from message to message. Real time help is shown in a separate window that
floats on top of all other windows. When real time help is selected from the Help
menu in the Message Edit Window, a window is opened. This window updates in the
same way the status area updates when moving from one field to another.

 To turn on Real Time Help:

From the Help menu, select Real Time Help.

CMP SUM VER. 1.0/1.1
2/20/97

104

 This opens the Real Time Help.

To turn on Field help:

(1) From the toolbar in the Real Time Help window, click on the Field button. This
shows the field help in the Real Time Help window.

(2) Now click on one field in the message, then tab to another field.

 Notice that the Field Help changed when you tabbed into another field, giving you
help on the new field.

 For Your Information: To get the other types of real time help, just press the
appropriate button located across the top of the real time help window. Try
pressing the Message, Set, Example, and Notes buttons to see what kind of
information is provided for each of these.

To turn off Real Time Help:

(1) From the Help menu, select Real Time Help.

 This is the same way you turned Real Time Help on. By selecting the Real
Time Help again, the Real Time Help window is closed.

(2) For this exercise, turn the Real time help back on.

c. Clearing fields

 To clear text in a field:

(1) Make the EXER set field containing "MOREINFO" active by clicking in the field.
(2) To clear the text, select Clear Field from the Edit menu. ((This function is not

implemented at this time))

 For Your Information: Larger objects such as sets can also be cleared by
selecting them and choosing Clear Set.

d. "Undoing" an action ((This function is not implemented at this time))

 Selecting Undo from the Edit menu will reverse the most recently executed action.

To undo an action:

From the Edit menu, select Undo Clear.

CMP SUM VER. 1.0/1.1
2/20/97

105

 Notice that the text you just erased now reappears.

 Selecting Undo a second time will redo the action that was just undone. Undo
works for most commands and all message editing functions.

e. Pre-populated Fields

 Some fields, as specified in the format for the message, have data in them before
editing is begun. These fields are called pre-populated fields. The first field in the
MSGID set is an example of a pre-populated field. These fields may not be edited.

f. Alternate Content Field

 Many sets have fields whose contents may be formatted in two or more ways. Any
field like this is called an alternate content field. The program provides easy access to
alternate content fields. If a field is an alternate content field, then "Alt" will be
displayed in the field status area at the bottom of the screen.

 To toggle through the alternates:

(1) Use the scroll bar on the right to scroll down to the POC set.
(2) Click with the mouse into the third field of the POC set.

 Notice that there is an "Alt" in the field status area, indicating that this is an
alternate content field.

(3) From the View menu, select Next Field Alternate repeatedly until the alternate
field is located. The current field type is displayed in the field status area.

To show all of the possible fields for an alternate contents field, select the Field Alternates
cascading menu from the View menu. From the Field Alternates cascading menu, you can
choose a field alternate directly.

Keyboard Method: The F2 key can also be used.

For Your Information: If information is entered into the default field alternate and it does
not match the format of this alternate but does match a different alternate, when the message
is saved and reopened, the system will select the best match for field alternate. If a field
alternate is chosen, this field alternate will be displayed upon reopening a saved message.

g. Repeating Field Groups

CMP SUM VER. 1.0/1.1
2/20/97

106

 All field groups (some may consist of only one field) can be repeated as necessary.
Repeatable field groups are shown by an "R" flag in the field status area at the bottom
of the message.

To repeat a field group (fg):

(1) Select the last field in the REF set by clicking on its field delimiter.
(2) From the Edit menu, select the cascading menu item Repeat Field Group. From

the cascading menu Repeat FG, select 1.

This repeats the selected field group once. When a field group is repeated, an empty duplicate
of the field is pasted immediately after the current selection. Field contents are not copied.
To repeat the field group more than five times, select the menu item more... from the Repeat
cascading menu. This will bring up a dialog box that allows the user to type in the number of
times to repeat the field group.

(3) Select Undo Repeat FG from the Edit menu to undo the repeat.
(NOTE: NOT AVAILABLE AT THIS TIME).

Keyboard Method: A short-cut for repeating a field group is to press the RETURN key after
filling out a field group to repeat it. If duplicate fields are not required, hit return again and it will
disappear.

For Your Information: To repeat a field group containing more than one field, the field
group can be selected either by using the Field Group item in the Select menu or by selecting a
single field in the field group, as described above.

h. Coded Fields

 Coded field are fields that have a list of valid entries associated with them. The user
can select from a list of possible entries by pressing on the pop-up menu button next to
the field.

 To edit coded fields:

(1) Fields that are coded can be edited by pressing the pop-up menu button to the right
of a coded.

(2) A pop-up menu with the valid code entries for that field, according to Joint Pub 6-
04 for USMTF messages or the service standard from which the message is
defined, will appear. The proper code can be selected from this list.

For Your Information: Alternately, the user can type the desired value directly into the
field.

CMP SUM VER. 1.0/1.1
2/20/97

107

4.10.4 Editing Sets

a. Inserting Sets

 The MTF format allows the modification of messages by adding, deleting, and
repeating sets or segments (groups of sets) in a message. The program supports the
editing of sets through a variety of functions. Most of these functions are available
from the Edit menu.

To insert a set:

(1) Select the REF set by clicking on its set id. The inserted set will go below the
selected set.

A box border around the entire set shows that the set is selected.

(2) From the Edit menu, select menu item Insert Set.

 When Insert Set is selected, a cascading menu pulls down. The choices on the
menu are the sets that are valid to insert at this point.

(3) To insert at this point, the user would simply click on the set name from the
cascading menu. To cancel at this point, click anywhere except on the cascading
menu.

b. Repeating Existing Sets

 Certain sets in a message are repeatable as required. By selecting the set and using the
Repeat menu item from the Edit menu, the set can be repeated as many times as
necessary. Repeatable sets are shown by an "R" flag following the set name in the
status line. These are the only sets that are repeatable.

 To repeat a set:

(1) Select the REF set by clicking on the set id.

 A box border around the entire set shows that the set is selected.

(2) From the Edit menu, select menu item Repeat Set

 Selecting Repeat pulls down a cascading menu. The choices on the menu are the
number of times that the set will be repeated.

CMP SUM VER. 1.0/1.1
2/20/97

108

(3) From the cascading menu, choose 2.

 Notice that the REF set is repeated one time, but the information it contained is
not.

c. Repeating Rows in columnar set 5

 Rows in columnar sets (noted by beginning with a number) may be repeated.

(1) Select the first row in the columnar set.
(2) From the Edit menu, select Repeat Row and select the number of rows from the

cascade menu to be added.

4.10.5 Saving Messages

Users should save their work frequently. While computers are reliable for the most part, there are
time when some work will be lost, such as during a power outage. Saving frequently will
minimize the amount of work lost if the computer malfunctions. Once a message is created, the
message should be saved. Saving a message will write to the hard disk so that it can be recalled
and edited later.

a. To save a message:

(1) From the File menu of the Message Edit Window, select Save.

 Many commands, including Save, can be accessed by simply selecting the toolbar
button that corresponds to the command. This is an alternate way of selecting a
command. The save command is the first icon on the Message Edit Window

4.10.6 Spelling Checker ((This function is not implemented at this time))

The spelling dialog box checks the message for spelling errors and suggests possible corrections.

a. To check the spelling of a message:

(1) From the Tools menu in the Message Edit Window, select Spelling...

 This will open the spelling dialog box and begin searching the free text sets in the
message for spelling errors. When the first error is found, the Unknown Work
field will be populated with the first unknown word.

CMP SUM VER. 1.0/1.1
2/20/97

109

(2) The user has a number of choices.

 "Ignore" should be used if the user wants to keep the work as it is currently
spelled.

 "Ignore All" is used if the user wants the spell checker to ignore all occurrences of
the unknown work in the entire message.

 "Change" is used if the work in the Change To text box is the correct spelling of
the word, and the user would like the system to change the word to the correct
spelling. The user may also enter an alternate spelling in the Change To field and
use the Change button.

 "Change All" is used if the user would like the spell checker to change all
occurrences of the unknown word to the Change To word.

 "Suggest" is used if the correct spelling is not in the Change To text field or the
scrolling list. The user can type a spelling thought to be correct into the Change
To text box, and then press Suggest to see if the word is in the spell checker.

 "Suggestion" is a scrolling list that contains the other words close in spelling to the
unknown word. If the correct spelling is contained in the list, users can select the
correct spelling and press Change To to replace the unknown word with the
selected word.

 "Search" is a group of radio buttons that allows the user to specify the direction
and scope of the spelling check. Up will cause the spelling checker to search up
from the cursor position to the beginning of the message, Down will search down
to the end of the message, and All will search the entire message.

(3) To close the Spelling dialog box, press Cancel.

4.10.7 Validating Messages and Error Correction

Validating a message will check the structure and the contents of the message against the
appropriate message formatting rules to verify that it conforms to the message standard governing
that message.

The program divides errors into two main types, field/set/message errors and structural errors.
Field/set/message errors are errors that occur within the fields, sets, or message. Structural errors
are errors concerning the structural notation of the message. However, both of these types of
errors are handled under one “ERRORS” button.

a. To show field, set, and message errors

CMP SUM VER. 1.0/1.1
2/20/97

110

(1) From the Tools menu, choose “Errors”. This will bring up a message box
showing that the system is validating the message and asking the user to please
wait. The Field/Set/Message Errors dialog box below will appear and the system
will automatically locate the place in the message where the first error is located.
The error will be highlighted in the message. Depending on the message window
size, the user may need to scroll horizontally to see errors since the error may be
off the screen.

 "Error Type" displays the type of error (e.g., field error or set error).

 "Description" displays a description of the current error.

 "Set ID" displays the set id of the set containing the current error.

 "Field Reference and Use No." displays the field reference and use number for an
erroneous field, if the error type involves a field.

 "Field Position" displays the position of the erroneous field in the set, if the error is
a field error. If the error is not a field error, the text field is empty and the label
grays out.

 "Current Field Value" displays the current contents of the erroneous field;
otherwise, it is empty and the label is grayed out.

 "Change Field To:" allows modification of the contents of erroneous fields when
field errors have occurred. To modify the contents, simply type the correct field
data on this field and press the Change Field button. The System will validate
the new field contents before changing the contents of the erroneous field in the
message.

 "Next Error" revalidates the field and displays a warning if the field is still invalid.
It then updates the fields in the dialog box to display information about the next
error found in the current message, and brings the cursor to the location of the
next error in the message. When the end of the message is reached, a message box
will indicate this, allowing users to end the error correction or continue to the
beginning of the message.

 "Prev Error" revalidates the field and displays a warning if the field is still invalid.
Then it updates the dialog box fields to display information about the previous
error in the current message and brings the user to the location of that error in the
message.

CMP SUM VER. 1.0/1.1
2/20/97

111

 "Change," for errors involving fields, updates the erroneous field's contents in the
message with the contents of the Change Field To: text field after checking the
validity of the new contents.

 "Validate" validates the current message.

 In the message window, the error location is indicated by a red box around the set
in which the error is contained and the field is gray.

(2) At any time while correcting errors in a message, the user can click on the
Message Edit Window to make it active and correct errors directly on the message
using the message edit functions. In fact, for set level errors, this may be the only
way to correct errors. Then, click on the Field/Set/Message Error dialog box
and choose the Validate button.

(3) To close the Field/Set/Message Error dialog box, press Close.
(4) To redisplay the Field/Set/Message Error dialog box, select Show

Field/Set/Message Errors from the Tool menu.

 For Your Information: Fields with errors will have a gray background. The field
status will display an "Err" message for these fields.

b. To show structural errors

 Structural errors occur when a message's structural notation (SNV) rules are violated.
These types of errors check for set conditionality violations, etc. For example, if both
an EXER and an OPER set are in a message, an SNV error will occur.

(1) From the Tools menu, choose Errors...

 This displays a list of all of the structural errors in the current message. The
location of the error in the message is not presently indicated. Correct the errors
directly in the Message Edit Window. After making changes, press the Update
Errors button to update the list of remaining errors. Next Error and Prev Error
move the user through the error list.

c. Correcting an Error in an Error Set ((This function is not implemented at this time))

 When an error such as a missing set id occurs, the program needs help to correct the
set. For this type of error, the erroneous information is put into an "error set",
displayed as a red box with pink crosshatching. The entire set is contained in the error
set. To correct the error, edit the erroneous part of the set (correct the set id, add a

CMP SUM VER. 1.0/1.1
2/20/97

112

missing end of set mark, etc.) when the field is tabbed out, the corrected set will revert
to a normal set.

4.10.8 Previewing and Printing Messages

The preview command will show how the message will look when it is printed out or put in
transmission ready form. While the message may be previewed in this state note that it cannot be
edited.

a. To preview a message

(1) From the File menu, choose Preview. The dialog box below will be shown. Use
the scroll bar to scroll through the message. Segments in the message are also
displayed.

(2) When the message preview is finished, press Close to close the dialog box.

b. To print the open message

(1) From the File menu, choose Print. This will open the dialog box , giving you a
number of options to select.

(2) To print with the print settings as they are, press the Print button, or press the
Return key.

4.10.9 Filling in the Header (NOTE: For JMPS standalone only.)

In order to enter header data note that it is first necessary to create the message, save the message
in the working directory, retrieve the message from the working directory, and then select the
header format which one wishes to apply to the message.

A message can be saved with or without address information. All information pertaining to
message addressing is contained in a message header.

a. To fill in a header

(1) From the Edit menu, choose the menu item Header.... This will cause the
following dialog box to appear. The header format type must be chosen.

(2) Select the desired header format, and then press OK.

CMP SUM VER. 1.0/1.1
2/20/97

113

 The message header dialog box below will appear. Many of the items have default
values. The user only needs to change them if they are not the desired values.

(3) Keep the classification as Unclassified.
(4) The date and time fill in automatically. To update, press the button labeled

Update DTG.
(5) The From: text box will be pre-populated with the default originator, if one was

set. If not, or to change it, select the ... button. When the ... button is pressed, the
Address Selection dialog box will appear.

From the Address Selection dialog box, the user can choose the address for the From: text
box.

(6) To choose an address to be selected, click on the address in the Address scrolling
list and select office symbols from the Office Symbols scrolling list, then press the
Add button. This adds the address and the office symbols that were selected to
the Addresses Selected scrolling list. When selected, an asterisk appears to the
left of the office symbol in the Office Symbol scrolling list indicating that the
office symbol has been added, and to the left of the long address.

To remove an address from the Addresses Selected List, select the address from the
Addresses Selected List and press the Remove button.

To remove office symbols from an Address that is selected, select the address from the
Addresses Selected List, then select the office symbols to be removed from the Office
Symbols scrolling list and press the Remove button.

(7) Select OK to exit the dialog box.
(8) In the To: text box, type in DIR JITC. Addresses can also be selected as described

above, using the button after the To: field.
(9) Press Save to Message and Close to save this information with the message and

return to the Message Edit Window.

For a detailed description of all the header features, see "Creating a New DD173 or JANAP"
in paragraph 4.12.5.

For Your Information: For the From, To, and Info fields, addresses can be selected if
entered previously in your address list, or addresses can be typed directly into the field.

b. To edit an existing message header

CMP SUM VER. 1.0/1.1
2/20/97

114

(1) With the message open on the screen, choose Header... from the Edit menu. The
header associated with this message will open.

(2) Perform any edit operations to the header, then select Save to Message and
Close. Changes will be saved with the message.

c. To remove a message header from a message

(1) Open the message containing the header to be removed.
(2) From the Edit Menu, choose Remove Header.... This permanently disassociates

the header information from the message.

4.10.10 Editing an Existing Message

Messages that have been created and saved can be open for further editing or reused as templates
to create new messages.

a. Opening a Saved Message

 Existing messages are opened from the Temporary Window.

 To open an existing message:

(1) To get to the Temporary Window, select Temporary Window from the
Windows menu.

The Windows menu is a list of all the windows that are open. This menu provides an easy
way to jump back and forth between windows.

(2) Highlight the message called Trainer Message by clicking on it.
(3) From the toolbar, select Edit push button.

 For Your Information: Another way of opening a message is to double-click on
the message name in the Temporary Window, or to press the Open button in the
Toolbar.

b. Columnar Sets

 Many tactical messages contain columnar sets. A columnar set is a set whose fields
are ordered arrangements of data aligned in columns (like numbers in a table).

CMP SUM VER. 1.0/1.1
2/20/97

115

 Data is entered into columnar sets just as it is entered into linear sets, except that it is
entered below the field label instead of to the right.

Repeating Rows in Columnar Sets:

 A row in a columnar set can be repeated in two ways. One way is to select any
field in a row (by clicking on a field delimiter) and selecting the Repeat FG
command from the edit menu.

 A second way is to use the Field Group command in the Select Menu to select the
field group, then use the Repeat FG command in the Edit menu.

c. Segment Bars

 Another View option is to show the segment bar icons. The segment bar icons are
bars showing where segments are located within a message. Segments are groups of
sets that can be repeated or edited. Segments may be nested. This option is only
available in messages containing segments.

(1) To toggle on segment bars

From the View menu, select Show Segment Bars. The following is the result of
toggling on the segment bars. The segment bar icons display to the left of the
message body and act like buttons. A segment may be selected by clicking on
its respective segment bar icon. Mandatory segments have red bars and
optional segments have green bars.

(2) To save the message with the name entered, press the OK button. (NOTE: THIS
FUNCTION IS NOT AVAILABLE AT THIS TIME).

4.10.11 Views

There are a number of ways that messages can be viewed in the Message Edit Window.

a. Field Map Characters . (NOTE: THIS FUNCTION IS NOT AVAILABLE AT
THIS TIME).

 A message can be displayed with the field map characters in the fields themselves (see
"Editing Field Contents" in paragraph 4.10.3 for more information).

 To toggle on field map characters;

CMP SUM VER. 1.0/1.1
2/20/97

116

From the View menu, select Show Field Maps.

 This toggles on the field maps, changing the active fields in the message from
empty fields to fields that have field maps.

(2) To select a segment

Click on the segment bar icon to the left of the segment desired:

 The bar will look "pressed in" and a selection box will appear around the sets in
the segment, indicating that the segment is selected. While the segment is selected,
all edit operations will apply to the segment.

(3) To deselect a segment

Click on the same segment bar, click on a new segment bar, or click in any field.

4.10.12 Cutting, Copying, Deleting, and Pasting . (NOTE: THIS FUNCTION IS NOT
AVAILABLE AT THIS TIME).

This program allows parts of messages to be copied and pasted to other parts of the message. It
also allows parts of messages to be deleted. These actions should be performed in compliance
with the MTF message or the rules governing the standard from which the message is defined;
otherwise they could result in an invalid message.

"Cutting" deletes the item selected and places it into a buffer.

"Copying" creates a duplicate of the item selected and places it into a buffer.

"Deleting" erases the item currently selected.

"Pasting" inserts the contents of the buffer after the currently-selected object, or after the
cursor in the case of text.

"Undo" will reverse the previous action. For example, a set may be deleted and a decision
made to get it back. Select Undo Delete. The Undo command must be used immediately
after the action for the action to be reversed.

a. To cut, copy, or delete a set

(1) Select the set by clicking on the set id or, from the Select menu, choose Set to
select the set in which the cursor is located. This directs the program to work on
this particular set.

CMP SUM VER. 1.0/1.1
2/20/97

117

(2) From the Edit menu, the user may select Cut, Copy, or Delete. For this
example, select Copy Set. By selecting Copy, the user puts a copy of the
selected field on the clipboard.

b. To paste the set

(1) Select the location to which the set should be pasted by clicking on a set in the
message where the set is to be inserted.

(2) From the Edit menu, select Paste Set. Copied objects are pasted after the
currently selected object. To paste a set after a second set, copying the first, select
the second set after copying the first and select "paste" from the Edit menu. The
command prompt in the status area reminds the user of the correct sequence of
events.

c. To undo pasting the set

From the Edit menu, select Undo Paste Set.

 This removes the pasted set. The Undo command must be used directly after the
command to be "undone". At this point, the user cannot undo the pasted field.
The user has to delete the pasted field to remove it.

d. To delete a set

(1) Select a set by clicking on its set id or choose Set from the Select menu.
(2) From the Edit menu, select Delete Set. This deletes the selected set.
(3) From the Edit menu, select Undo Delete.

 NEVER DELETE THE LAST OCCURANCE OF A MANDATORY SET. The
message will not validate if it does not contain all of the mandatory sets.

 For Your Information: Cutting, copying, pasting, and deleting segments works
in the same manner as the set operations. Segments are selected by clicking on
segment bars.

4.10.13 Deleting and Appending Fields

Editing Fields works slightly differently from editing sets and segments. Fields cannot be cut,
copies, or pasted. They can, however, be deleted and appended to sets.

CMP SUM VER. 1.0/1.1
2/20/97

118

a. To delete a field

(1) Select the field by clicking on its delimiter (/) or choose Field from the Select
menu.

(2) From the Edit menu, select Delete.

b. To append a field to a set . (NOTE: THIS FUNCTION IS NOT AVAILABLE AT
THIS TIME).

 If a message contains a set or sets with missing fields, the fields can be restored using
the Append Field command. Since fields will always be missing from the end of sets
(because fields shift left when a set is deleted), Append Fields adds fields of the
appropriate type to the end of sets. Once a set contains its full complement of fields,
the Append Field command will be disabled for that set.

(1) Select the set id of the set with the deleted field.
(2) Set Append Field from the Edit menu.

 The set is restored.

4.10.14 Restoring a Message . (NOTE: THIS FUNCTION IS NOT AVAILABLE AT
THIS TIME).

The Restore Message command restores any fields, sets, or segments that were present in the
original message template but are not in the current version of the message. This command does
not affect data in the fields of the message.

a. To restore a message

From the Tools menu, select Restore Message.

4.10.15 SunSPARCstation

Mappings
L1 New Message Review Message L2

Restart Identify Set
L3 Recall Msg Print Msg L4

Compose Msg Enter Argument

CMP SUM VER. 1.0/1.1
2/20/97

119

L5 Convs Mode Validate L6
Help Scroll Alternate

L7 Save Msg Command L8
Clear Field Repeat Field/Line

L9 Clear Identify MergeDat L10
Page Down Page Up

5 OTHER MESSAGE FUNCTIONS

5.1 SCOPE

In addition to inbound and outbound message processing, the Common Operating Environment
(COE) Message Processor (MP) performs several other key functions. Normalization software
converts message data into a format usable by host application software, e.g., Maneuver Control
System (MCS). The Map Definition Language MAP (MDLMAP) program automatically
generates messages in MTF format from information extracted from operational databases. The
BOM to COM software converts BOMs to COMs and vice versa. The Journaling server provides
an operational message journal for inbound and outbound messages, and allows information to be
extracted from those messages. Finally, three other stand-alone tools are MTFVAL (for message
validation), MTFXTRACT (to execute queries and extract data from a message) and
MTFREPORT (to print a message in report format).

Thus, the remaining subparagraphs in this manual are as follows:

5.2 Normalization Software

5.3 Automatic Message Generation Using MDLMAP

5.4 Bit-Oriented Message (BOM) to Character-Oriented Message (COM) Software

5.5 Message Journaling Server

5.6 MTF Tools

5.2 NORMALIZATION SOFTWARE

5.2.1 Identification

This paragraph describes DII COE version 1.0/1.1, of the Normalization software CSCI for the
Army Common Operating Environment (COE) Message Processor.

CMP SUM VER. 1.0/1.1
2/20/97

120

5.2.2 Purpose

The purpose of this paragraph is to describe the Normalization software CSCI, its functionality,
the Application Programming Interface (API), and its rules for usage. This paragraph contains
the following subsections: Referenced Documents; Execution Procedures; and Error Messages.
Sample usage of the software and sample data files are included in the final subsections.

Referenced Documents
Document Number Title
WP94B0000076 The Joint Message Analysis Processing System (JMAPS)

User's Manual

5.3 AUTOMATIC MESSAGE GENERATION USING MDLMAP

5.3.1 Introduction

Different systems that must exchange information frequently do not represent this information in
the same format. This causes interoperability problems, because the output from one system
cannot be directly read as input by another. Instead, an operator has to manually convert one
formal to another. This introduces errors and delays into the communications process.

The MDLMAP program described in this report is designed to solve some of these
interoperability problems. MDLMAP works as a simple kind of interface "glue" for connecting
systems together. The "source" system produces output text in its own format. MDLMAP
transforms this text into the input format required by the "destination" system, using a "map file"
describing the required transformations. MDLMAP was originally developed to generate
USMTF messages from information extracted from operational databases. This "automatic
message generation" capability is easier and faster than existing "manual" methods, which require
an operator to query the database and then type or cut and paste the retrieved data into a message
format. Typically, automatic message generation is only the first step in the message preparation
process; a human operator edits the partial message, inserting information not available in the
database, and/or reviewing the message before it is released. It is also possible to arrange a fully
automatic message generation approach, where messages are created and transmitted without any
operator intervention.

5.3.1.1 Text Formats.

In the context of this report, "formatted" text is text that is constrained to follow simple, rigid
syntax rules. For example, the text of a MTF message consists of a sequence of records (called
sets in the USMTF standard), each consisting of a sequence of fields, each of which is a text

CMP SUM VER. 1.0/1.1
2/20/97

121

string. Special strings are used to separate fields and terminate sets*. Figure 5-1 shows an
example of a record and a field in a MTF message.

MSGID/ATOCONF/TACC/011/JUL//
PERID/190600Z/59:20059Z// // = terminator
AIRTASK/UNIT TASKING//
TASKUNIT/59TFS// / = field separator
msndat/207/-/GLIDER 41/4F15/CAR / -/D10/-/33541//

Figure 5-1. Records and Fields in a USMTF Message

* The MTF standard imposes additional constraints on messages based upon the presence or
absence of certain sets and upon the contents of certain fields.

MDLMAP is designed to process text that conforms to this basic, underlying format. The details
may change with different formats; the records may be different, or contain different fields, but the
basic format of the text must be a sequence of records of fields.

5.3.1.2 Text Format Translation.

MDLMAP translates text from one format to another by rearranging the input fields, perhaps
deleting some fields and possibly adding some new text. For example, the output of a database
report generator might appear as follows:

21392, 14095Z A234, SCOOP, 011, 435240N0751826W
21395 14105Z A202, DOG 011, 435240N0741820W

This text could be translated by MDLMAP into the following MTF message fragment:

MSGID/TACELINT//
SOI/21392/14095Z/14095Z/A234/SCOOP/011//
EMLOC/-/F/LS:435240N0751826W//
SOI/21395/14105Z/14105Z/A202/DOG/011//
EMLOC/-/F/LS:435240N0751820W//

The ability to translate the output format of database report generators into the format of USMTF
or ADatP-3 messages is the primary purpose of MDLMAP.

record

CMP SUM VER. 1.0/1.1
2/20/97

122

5.3.1.3 An Overview of MDLMAP.

MDLMAP is a processor for programs written in a special-purpose language called Map
Definition Language (MDL). A program in MDL specifies a mapping or translation between an
input and an output text file. When MDLMAP is in run, it reads its MDL program from a map
file. As MDLMAP executes the program, it reads the input text, then writes the translation of
this text as its output.

A MDL program consists of two parts. The first part is an input specification, which defines the
sequence of records and fields in the input text format. MDLMAP uses the input grammar to
parse the input text. The result of this parse is then used to assign values to variables in the
second part of the MDL program, which is an output expression defining the output to be
produced. MDLMAP executes the output expression, producing a stream of text that is returned
as the program's result.

5.3.1.4 Contents of this Section.

This section consists of the following four paragraphs:

a. Paragraph 5.3.1 is the introduction (i.e., this paragraph).
b. Paragraph 5.3.2 describes the MDL programming language in detail.
c. Paragraph 5.3.3 describes the command-level interface to MDLMAP
d. Paragraph 5.3.4 is a brief tutorial for writing MDL programs.

5.3.2 The Map Definition Language

5.3.2.1 Composition of an MDL Program.

This section describes the parts of an MDL program, beginning with the basic elements of the
program, then showing how these form the major sections of the program. This section then
describes the steps MDLMAP takes to execute the program.

5.3.2.1.1 Low Level Elements.

At the lowest level of detail, an MDL program is composed of a sequence of numbers, strings,
identifiers, reserved words, comments, and other tokens. These are described below.

CMP SUM VER. 1.0/1.1
2/20/97

123

A number is a sequence of decimal digits, optionally preceded by a plus (+) or minus (-) sign.
Numbers must be integers, decimal points and fractions are not allowed. For instance, these are
valid numbers:

0 +1234 -567890

A string is a sequence of characters enclosed in a pair of single quotes (') or double quotes (") are
also considered as valid strings. Some examples are:

" " 'abcd' "lmnop" '0'

The backslash (\) character is an escape character in a string. Instead of representing itself, it
changes the meaning of the following character or characters. The escape sequences recognized
by MDLMAP and their meanings are:

newline NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ? \?
single quote ' \'
double quote " \"
octal number 000 \000
hex number hhh \xhhh

Each escape sequence represents a single character in the string. Most escape sequences are
portable between machines. However, the octal and hexidecimal escape sequences produce
characters that are not portable between machines having different character sets. A sequence of
octal or hexidecimal digits ends with the first character that is not an octal or hexidecimal digit.
Octal numbers contain at most three digits; hexidecimal numbers contain any number of digits.

Escape sequences are used primarily to put newline, single quote, and double quote characters
into strings. For example, escape sequences are essential in the following string:

'Joe said, "I can\'t live without MDLMAP!"\n'
It is an error for a string to contain an actual newline character; that is, to span more than one
line. In the following example, the string on the left is illegal. When the last character on a line is
a backslash, then the newline character is ignored. The string on the right is legal and contains the
characters "this string is allowed."

'this string is 'this string is \

CMP SUM VER. 1.0/1.1
2/20/97

124

illegal' allowed'

An identifier is a name supplied by the programmer. Identifiers consist of a sequence of letters,
digits, and the characters '$', '@', and '_'. Identifiers may not begin with a digit. These are valid
identifiers:

abcdef A123xyZ $frog @foo_bar@

Uppercase and lowercase characters are distinct. The strings abc, Abc, and ABC form three
different identifiers.

Reserved words are names defined by the MDL language. They cannot be used as identifiers by
the programmer. These are the MDL reserved words:

filler loop rec tail
for output separator terminator
input recno tag

Comments are remarks inserted by the programmer; they are ignored by MDLMAP. Any text
that is not part of a string constant and is preceded by /* and followed by */ is a comment. These
comments cannot be nested. For example:

/* This is a valid comment*/
/* However, /* this comment */ is illegal */

Comments may be placed at the end of a line. All text from the characters // to the end of the line
is a comment. For example:

// This is a valid comment
// So is this; /* and // are part of the comment.

5.3.2.1.2 High-Level Elements.

There are two main parts to an MDL program. The first part of the program is the input
specification, which describes the format of the input text. It consists of three sections:

a. The lexical declarations specify how the input text is to be divided into fields and
records

b. The record declarations specify the composition of each record type in terms of the
fields it may contain

c. The input grammar describes how to determine whether a particular sequence of input
records is a valid instance of the input format.

CMP SUM VER. 1.0/1.1
2/20/97

125

The second part of an MDL program is the output expression, which specifies how to generate
the output text, in the output format. This expression, when evaluated, returns a string as its
result. This string is the output of the MDL program.

Figure 5-2 shows the parts of a sample MDL program used as an example throughout this
section.

separator = '/'; lexical declarations

terminator = '!';

rec person 'PER' = last first ;

rec addr 'ADDRESS' = street city state ; record declarations

rec phone 'PHONE' = home work ;
rec sold 'SOLD' = date { thing } ;

input = input grammar
list { person addr phone sales { sold } } ;

output =

list { output expression

person.first ' ' person.last '\n'
addr.street '\n'
addr.city ', ' addr.state ' ' addr.zip '\n'

 };

Figure 5-2. A Sample MDL Program

5.3.2.1.3 Execution of a MDL Program.

When MDLMAP is run, it performs the following steps:

a. The MDL program in the map file is read and compiled. Certain errors in the MDL
program can be detected at this point. If any are discovered, MDLMAP prints an
error message and terminates.

b. The input text file is read and divided into fields and records according to the lexical
declarations. As each record is identified, it is compared to the record declarations.
Any input record which does not match one of the defined record types is discarded at
this point.

c. The sequence of records in the input text is parsed according to the input grammar.
This produces a data structure called a parse tree which shows how the input record

CMP SUM VER. 1.0/1.1
2/20/97

126

sequence can be derived from the input grammar. If the input record sequence does
not correspond to the input grammar, MDLMAP prints an error message and
terminates.

d. The output expression is evaluated. MDLMAP uses the input parse tree and the text
of the input fields to determine the value of the references in the output expression.
The result of the output expression is the output of the MDLMAP program. If errors
occur while evaluating the output expression, MDLMAP prints an error message and
terminates.

5.3.2.2 Lexical Declarations.

The lexical declarations in the map file specify the record terminator and field separator for the
input text. The separator is the string that indicates the boundary between two fields. The
terminator is the string that indicates the end of a record. These strings are specified in the map
file as follows:

separator = string; (for example: separator = '/';)
terminator = string; (for example: terminator = '//';)

These declarations are optional and may appear in the opposite order. The default separator is the
string '/'; the default terminator is the string '!'.

It is an error if either string is empty; that is, both strings must contain at least one character. It is
an error if the separator and terminator are the same string. (However, one string may be a suffix
or prefix of the other.)

As MDLMAP reads the input text, it looks for both the terminator and the separator strings.
When the separator string is recognized, the current field ends and a new field in the current
record begins. When the terminator string is recognized, the current record ends; if there are
more characters in the input text, a new record begins. The separator and terminator strings are
always discarded; neither string ever becomes part of a field.

MDLMAP gives special treatment to white space* characters at the beginning and end of an input
field. Leading and trailing white space characters are discarded, except that SPACE characters
before the first and after the last non-white space characters are retained. This has the effect of
removing NEWLINE characters that are not embedded in a field.

As an example, suppose MDLMAP processes the following input text using the default separator
and terminator. (In this text, SPACE characters are represented by a '.').

FIRST.FIELD/..SECOND.FIELD
../

CMP SUM VER. 1.0/1.1
2/20/97

127

THIRD.

FIELD

!

Given this text, MDLMAP would create one record containing three fields. The value of the
three fields would be as follows:

field#1 'FIRST FIELD'
field#2 '..SECOND FIELD'
field#3 'THIRD \nFIELD'

* A white space character is a SPACE, TAB, RETURN, NEWLINE, FORMFEED, or
vertical tab character.

Figure 5-3 contains a second example of how MDLMAP divides input text into fields and
records. The top half of the figure shows the input text; the bottom half shows the record and
field contents.

Each time MDLMAP finds the end of a record in the input text, it consults the record declarations
to determine the type of the record and whether it has found a valid instance of this record type.
This is the subject of the next section.

Input Text
PER/DOYLE/ARTHUR/CONAN!
PER/HOLMES/SHERLOCK!
ADDRESS/222B BAKER/NEW YORK/NY!
PHONE!
SOLD/02 MAY 1889/TELEPHONE!
SOLD/03 JUN 1889/HORSE/CARRIAGE!
PER/WIMSEY/PETER!
ADDRESS/TALLBOYS/-/UK!
PHONE//555-1010!
SOLD/14 MAY 1932/PORT WINE!
SOLD/18 MAY 1932/RARE BOOK!

Fields and Records
record
number tag field data field #1 data field #2 data field #3
01 PER DOYLE ARTHUR CONAN
02 PER HOLMES SHERLOCK
03 ADDRESS 222B BAKER NEW YORK NY
04 PHONE
05 SOLD 02 MAY 1889 TELEPHONE

CMP SUM VER. 1.0/1.1
2/20/97

128

06 SOLD 03 JUN 1889 HORSE CARRIAGE
07 PER WIMSEY PETER
08 ADDRESS TALLBOYS - UK
09 PHONE 555-1010
10 SOLD 14 MAY 1932 PORT WINE
11 SOLD 18 MAY 1932 RARE BOOK

Figure 5-3. Input Text Divided Into Fields and Records

5.3.2.3 Record Declarations.

Each record declaration in the map file specifies three things. It shows how to recognize an
instance of this record type in the input text. It defines the number of fields that may appear in a
record of this type. Finally, it supplies identifiers that refer to the record and its fields in the
output expression.

Record declarations have the following form:

rec name tagstring = fixedfields { tailfields } ;

For example, here are the four record declarations from the sample map file in Figure 5-2:

rec person 'PER' = last first ;
rec addr 'ADDRESS' = street city state ;
rec phone 'PHONE' = home work ;
rec sold 'SOLD' = date { thing } ;

The record name is the identifier used in the output expression to refer to an instance of this
record type. A record name has global scope and cannot be used as the name of a different record
or in the input grammar as the name of a repetition.

The first field in each input record is the tag field; all subsequent fields are data fields. The type
of the input record is determined by matching the tag field against the tagstring part of a record
declaration. (If an input record's tag does not match any record declaration, MDLMAP prints a
warning message and discards that record.) It is an error if two record declarations have the same
tagstring.

If there is more than one record declaration in an MDL program, then each must have a tagstring
part. (Otherwise there would be no way to determine the type of the input records.) If there is
exactly one record declaration in an MDL program, then the tagstring part of the record
declaration is optional. If the tagstring is omitted, then the input records do not have a tag field
(that is, the first is also the first data field) and every input record is of the same type.

CMP SUM VER. 1.0/1.1
2/20/97

129

The fixedfields part is a list of identifiers used in the output expression to refer to the fields of a
record. The first identifier in the list refers to the first data field in the record, and so forth. The
reserved word filler may be used in the fixedfields part to denote a field that will be recognized in
the input text but that cannot be referenced in the output expression.

The tailfields part declares a group of fields that may be repeated at the end of an input record.
The repeated fields are known as the record's tail repetition. The tailfield identifiers are used in
the output expression to refer to the repeated fields: for each element in the tail repetition, the first
identifier refers to the first data field, and so forth.

The tailfields part of a record declaration is optional. When it is omitted we have a fixed-length
record type; when it is included we have a variable-length record type. A missing field in the
input text results in an empty field in the input record. If there are too many fields in the input
text for a fixed-length record, MDLMAP prints a warning message and discards that record. For
example, given these record declarations:

rec fix 'F' = f1 f2; fixed-length; exactly two fields
rec var 'V' = v1 { t1 t2}; variable-length; one or more fields

MDLMAP handles this input text as follows:

F! f1 is ' '; f2 is ' '
F/aa/bb! f1 is 'aa'; f2 is 'bb'
F/aa/bb/cc! invalid record; too many fields

V/dd! v1 is 'dd'; the tail repetition is empty
V/dd/ee/ff/gg! v1 is 'dd'; the tail repetition contains two elements:

in the first tail element, t1 is 'ee'; t2 is 'ff';
in the second tail element, t1 is 'gg'; t2 is ''.

Figure 5-4 depicts the sample input text from Figure 5-3 after MDLMAP has identified the types
of the input records.

rec
#

record
type

data field
#1

data field
#2

data field
#3

01 invalid DOYLE ARTHUR CONAN
02 person HOLMES SHERLOCK
03 addr 222B BAKER NEW YORK NY
04 phone
05 sold 02 MAY 1889 TELEPHONE
06 sold 03 JUN 1889 HORSE CARRIAGE
07 person WIMSEY PETER
08 addr TALLBOYS - UK
09 phone 555-1010

discarded:
invalid # of record

CMP SUM VER. 1.0/1.1
2/20/97

130

10 sold 14 MAY 1932 PORT WINE
11 sold 18 MAY 1932 RARE BOOK

Figure 5-4. Input Text After Record Identification

5.3.2.4 Input Grammar.

The input grammar in a map file describes all of the permissible sequences of input records. It
does this by declaring groups of records and repetitions of these groups. MDLMAP parses the
input record sequence into instances of these groups and repetitions. The resulting data structure
is used to determine the value of references in the output expression.

A group declaration is an ordered list of its members. Any record declared in the map file may be
a group member. A group member may also be a repetition. (Repetitions will be described later
in this section.)

The input grammar as a whole is a group; it has the following form:

input = group ;

For example, given the record declarations in the sample map file in Figure 5-2, we could write
the following input grammar:

input = person addr phone ;

This input grammar states that the input text must consist of exactly one group, which must
contain one person record, one addr record, and one phone record, in that order. In general, a
group declaration is a (possibly empty) sequence of record types and/or repetitions. When
MDLMAP attempts to find an instance of a group type in the input record sequence, it must find
each member of the group in the specified order.

The declaration of a repetition always appears as one of the members of a group. The declaration
has the following form:

name [maxrep] {group } ;

The repetition name is the identifier used to refer to this repetition in the output expression. It
may also be used as a member of a subsequent group declaration in the input grammar.
Repetition names have global scope. It is an error for a repetition to have the same name as a
record type. It is an error to declare two repetitions with the same name.

The group part of the repetition declaration is the sequence of record types and/or repetitions in
the current repetition. Since the members of a group may be repetitions, one repetition may be
nested inside another.

CMP SUM VER. 1.0/1.1
2/20/97

131

The maxrep part is an optional upper limit on the number of times that the group may be repeated
in the input text. If omitted, there is no limit on the number of elements. There is never a lower
limit on the number of elements.

When MDLMAP finds an instance of a repetition in the input record sequence, it attempts to
match the repetition's group as many times as possible, up to the limit imposed by maxrep. Each
time the group is matched, one element is added to the repetition. MDLMAP always succeeds in
matching a repetition to the input sequence, since every repetition is allowed to have zero
elements.

As an example, we might write the following input grammar:

input = rep { person addr phone } ;

This grammar states that input text consists of a group containing one member, a rep repetition.
Each element of the repetition must contain a person, addr, and phone record, in that order.
The input text may contain any number of these elements.

To place an upper limit on the number of repetitions, we could write:

input = rep [10] { person addr phone } ;

This would permit a maximum of 10 groups to appear in the input text. (There would be no
minimum number; the input text could be completely empty.)

One repetition may be nested inside another. This is done in the sample map file in Figure 5-2,
where the input grammar is:

input = list {person addr phone sales { sold } } ;

This grammar states that the input text is a group with one member, a list repetition. Each
element of this repetition is a group containing a person, addr, and phone record, followed by a
sale repetition. A sales repetition is declared to consist of zero or more sold records. Figure 5-5
represents the parse tree created by MDLMAP using this grammar on the input record sequence
from Figure 5-4.

Once we have declared a repetition type, we may refer to it by name in the remainder of the input
grammar. For example, given record types A and B, we could write this grammar:

input = rp2 { A } B rp2;

This grammar states that the input text contains a number of A records, followed by exactly one B
record, followed by a (possibly different) number of A records.

Suppose we give the above input grammar to MDLMAP, together with the following sequence of
records: A, A, B, A. As MDLMAP parse the input record sequence, it recognizes the first two A

CMP SUM VER. 1.0/1.1
2/20/97

132

records as the first rp2; it next finds the required B record; it finally recognizes the final A record
as the final rp2.

If we give MDLMAP the same input grammar and the input sequence A, A, then it will print an
error message and terminate. MDLMAP recognizes the two A records as the first rp2 member of
the input group. It then fails to find the required B record and consequently fails to parse the
input text. When this happens, MDLMAP prints an error message and terminates.

rec
#

record
type

data field
#1

data field
#2

data field
#3

01 invalid DOYLE ARTHUR CONAN
02 person HOLMES SHERLOCK
03 addr 222B BAKER NEW YORK NY
04 phone
05 sold 02 MAY 1889 TELEPHONE
06 sold 03 JUN 1889 HORSE CARRIAGE
07 person WIMSEY PETER
08 addr TALLBOYS - UK
09 phone 555-1010
10 sold 14 MAY 1932 PORT WINE
11 sold 18 MAY 1932 RARE BOOK

Figure 5-5. Input Text After Parser

list #1

list #2

sales#1

sales#2

sales#1

sales#2

parse tree

CMP SUM VER. 1.0/1.1
2/20/97

133

INPUT PARSE ACTION REPORT: INPUT PARSE ACTION REPORT:

attempting to parse a Group [input] attempting to parse a
Group [input]

parsing Rep (rp2) parsing Rep (rp2)
attempting to parse f Group (rp2) attempting to parse a

Group (rp2)
parsing a Record (a):OK parsing a Record (a):OK
Group (rp2) succeeded Group (rp2) succeeded
parsed Rep (rp2) #1 parsed Rep (rp2) #1
attempting to parse a Group (rp2) attempting to parse a

Group (rp2)
parsing a Record(a):OK parsing a Record(a):OK
Group (rp2) succeeded Group (rp2) succeeded
parsed Rep (rp2) #2 parsed Rep (rp2) #2
attempting to parse a Group (rp2) attempting to parse a

Group (rp2)
parsing a Record(a):FAIL (not a b) parsing a Record(a):FAIL

(EOF)
Group(rp2) failed Group (rp2) failed

 done parsing Rep (rp2) done parsing Rep (rp2)
 parsing a Record (b):OK parsing a Record(b):FAIL

(EOF)
 parsing Rep (rp2) Group (input) failed

attempting to parse a Group
(rp2)

parsing a Record(a):OK Group (rp2) succeeded
parsed Rep (rp2) #1
attempting to parse a Group (rp2)

parsing a Record (a):FAIL (EOF)
Group (rp2) failed
done parsing Rep (rp2)
Group (input) succeeded

Parsing A, A, B, A Parsing A, A
(successful) (not successful)

Figure 5-6. Parsing Action Reports from MDLMAP

MDLMAP is capable of printing a report of its action as it parses the input record sequence.
Figure 5-6 displays the output text produced by MDLMAP for the two input sequences above.

It is possible to write an ambiguous input grammar in MDL. In this case, there will be some input
sequences with more than one valid parse. For example, the following grammar is ambiguous:

input = rp3 { A } rp3 ;

Given an input sequence containing a single A record, there are two possible parses:

1. The first rp3 could contain one element and the second rp3 could be empty.

CMP SUM VER. 1.0/1.1
2/20/97

134

2. The first rp3 could be empty and the second rp3 could contain one element.
MDLMAP deals with ambiguity in the following fashion: when it parses a repetition, it always
matches as many elements as possible. Consequently, in the above example MDLMAP will
always produce parse #1.

Because of this rule, MDLMAP will sometimes report that its input sequence cannot be parsed
even though a legal parse does exist. For example, the following grammar is both legal and
unambiguous; however, using it, MDLMAP will always fail to parse the input sequence.

input = rp4 { A } A ;

The trouble is that no matter how many A records appear in the input sequence, MDLMAP will
match all of them as it parses the rp4 member. There will never be an A record "left over" to
match the final member in the input group. Consequently, MDLMAP can never succeed using
this grammar. Users must be careful to avoid writing such a grammar.

5.3.2.5 Output Expressions.

MDLMAP first reads and parses the input text file according to the declarations in the map file. It
then evaluates the map file's output expression. The string result returned by this expression is the
output of the MDLMAP program.

Expressions are composed of constants, references, and operators. A constant is a string or a
number, as defined in section 5.3.2.1.1. A reference is a name for part of the processed input text.
 An operator takes one or more expressions as its operands and returns some computed value.

This section describes how expressions in MDL are composed and explains how these expressions
are evaluated to produce a result.

5.3.2.5.1 Printing the Parse Tree.

The reserved word input, when used by itself as the output expression, causes MDLMAP to print
the parsed representation of the input text. This shows how the input text was broken into
records and fields, and also shows how the input record sequence was broken down into
repetitions and groups. This can be useful for debugging the input portion of the map file.

For example, given the map file from Figure 5-2 and the sample input text from Figure 5-3,
MDLMAP produces the following output:

ValGroup (input)=[
ValRep (2*list)=[
01: ValGroup (list)=[
ValRecord(#1,person)=[HOLMES/SHERLOCK]
ValRecord(#2,addr)=[222B BAKER/NEW YORK/NY/10010]
ValRecord(#3,phone)=[]

CMP SUM VER. 1.0/1.1
2/20/97

135

ValRep(2*sales)=[
01: ValGroup(sales)=[
ValRecord(#4,sold)=[02 MAY 1889/TELEPHONE]]
02: ValGroup(sales)=[
ValRecord(#5,sold)=[03 JUN 1889/HORSE/CARRIAGE]]]]
02: ValGroup(list)=[
ValRecord(#6,person)=[WIMSEY/PETER]
ValRecord(#7,addr)=[TALLBOYS/-/UK/]
ValRecord(#8,phone)=[/555-1010]
ValRep(2*sales)=[
01: ValGroup(sales)=[
ValRecord(#9,sold)=[14 MAY 1932/PORT WINE]]
02: ValGroup(sales)=[
ValRecord(#10,sold)=[18 MAY 1932/RARE BOOK]]]]]]
This output can be understood as follows:

a. At the top level, the entire input is a group. This group contains one member, which is
a list repetition.

b. The list repetition contains two elements, each of which is a group of four members:
person, addr, and phone records, and a sales repetition.

c. Each sales repetition happens to contain two elements. Each element is a group
having one member, a sold record.

5.3.2.5.2 References and Values.

A reference is an identifier used in the output expression that denotes some part of the input text.
 The value of a reference is the corresponding part of the input parse tree.

A reference is almost always one of the identifiers used in the input specification. (A reference
can also be a user-defined variable; see section 5.3.2.5.3.16. For example, given the map file from
the previous section, the identifier list is a reference to the list repetition that is the sole member
of the top-level group.

The value denoted by a reference depends on the scope in which it appears. The scope of the
output expression as a whole is the global scope, in which the only defined references are the
members of the top-level input group. However, certain operators may introduce new, local
scopes, in which other references are defined. (See sections 5.3.2.5.3.8 and 5.3.2.5.3.9).

A value will always be one of the following categories:

a. A value can be a string. A reference that denotes a specific input field returns a string
as its value.

CMP SUM VER. 1.0/1.1
2/20/97

136

b. A value can be a repetition. A reference that is the name of a repetition defined in the
input grammar returns a specific repetition as its value. A reference to the tail group
of a variable-length record also returns a repetition as its value.

c. A value can be a group. A reference to a specific element of a repetition returns a
group as its value. The fields of an input record also form a group.

d. A value can be empty. When a string is required, the empty value is the empty string
"". When a repetition or group is required, the empty value has the property that any
operator applied to it always returns the empty value.

e. A value can be undefined. When a string is required, the undefined value is the string
"***UNDEFINED***". When a repetition or group is required, the undefined value
has the property that any operator applied to it always returns the undefined value.

There is no distinct numeric type. As far as MDLMAP is concerned, a number is just a string that
contains only digit characters (and perhaps an initial + or - sign).

5.3.2.5.3 Operators.

This section describes the operators in an MDL expression. The table below lists all of the MDL
operators. The examples in this table use the following symbols:

expr any expression
rep an expression returning a repetition value
group an expression returning a record or group value
rec an expression returning a record
string an expression return a string value

CMP SUM VER. 1.0/1.1
2/20/97

137

() function call expr (expr_list)
[] subscripting rep [expr]
[] subrange selection rep [expr .. expr]
. member selection group.member
.recno record number rec .recno
.tag record tag string rec .tag
.tail record tail repetition rec .tail
{} qualification group { expr }
{} repetition rep { expr }
[>>]{} indexed repetition

or
for [expr>>expr] {expr}
rep [expr>>expr] {expr}

loop iteration loop [expr] {expr}
length # rep
! logical NOT ! expr
* multiplication expr * expr
/ division expr / expr
+ addition expr + expr
- subtraction expr - expr
&& logical AND expr && expr
|| logical OR expr || expr
== string equality expr == expr
!= string inequality expr != expr
> string greater than expr > expr
>= string greater than or equal to expr >= expr
< string less than expr < expr
<= string less than or equal to expr <= expr
== numeric equality expr #== expr
!= numeric inequality expr #!= expr
> numeric greater than expr #> expr
>= numeric greater than or equal to expr #>= expr
< numeric less than expr #< expr
<= numeric less than or equal to expr #<= expr
= assignment variable = expr
? : conditional evaluation expr ? expr : expr
none concatenation expr expr

Each box in the table contains operators having the same precedence. Operators in one box have
a higher precedence than operators in all following boxes. Unary operators are right-associated;
all others are left-associative. Parentheses override precedence and association. For example:

2*3+4 is 10; * takes precedence over +
2*(3+4) is 14; the parentheses override operator precedence

Figure 5-7. MDL Operators and Their Precedence

CMP SUM VER. 1.0/1.1
2/20/97

138

3-2-1 is 0; the operators group left-to-right
3-(2-1) is 2; the parentheses override operator association

In general, MDLMAP makes no assumptions about the order of evaluation. The conditional
operator ?:, and the boolean operators && and || are exceptions; these are described in detail in
section 5.3.2.5.3.14.

In the following operator descriptions, when we say that an operand "must be" a certain type, we
mean that MDLMAP writes an error message and quits if the condition is not true. When
possible, these errors are detected as the map file is parsed. However, some errors, especially
those where an operand "must be" a number, cannot be detected until the output expression is
evaluated.

5.3.2.5.3.1 Concatenation.

An expression of the form exp1 exp2 is a concatenation expression. Both expressions must be
strings. The result is the concatenation of the strings.

Example: assume str1 is "abc", and str2 is "def":

str1 str2 is "abcdef"

5.3.2.5.3.2 Subscripting.

An expression of the form expr [index] is a subscript expression. The first expression must be a
repetition or string. The second expression (the index) must be a number.

When applied to a repetition, the result is a single repetition element determined by the index
number: if 1, the first element; if 2, the second element; etc. When applied to a string, the result is
a new string containing a single character determined by the index number.

If the index number is less than one, the result is undefined. If the index number is greater than
the number of elements in the repetition or string, the result is empty.

Examples: assume list is the top-level repetition in Figure 5-5, and that str is "abcd":

list[1] is the group containing the first five valid input records
str[0] is undefined
str[1] is "a"
str[4] is "d"
str[5] is empty

5.3.2.5.3.3 Subrange Selection.

CMP SUM VER. 1.0/1.1
2/20/97

139

An expression of the form exp [first..last] is a subrange selection expression. The first expression
must be a repetition or string. The second and third expressions (first and last) must be numbers.

When applied to a repetition, the result is a new repetition containing a sub-sequence of the
elements in exp, where first specifies the first element and last the last element of the sub-
sequence. When applied to a string, the result is a new string containing a substring of exp
specified by first and last.

If first is less than one, the result is undefined. If first is greater than the number of elements in
the repetition or string, or if first is less than last, then the result is empty. If last is greater than
the number of elements, then the last element in the result is the last element in exp.

Examples: assume that str is "abcd":

str[1..2] is "ab" str[0..2] is undefined
str[2..4] is "bcd" str[5..9] is empty
str[3..3] is "c" str[3..2] is empty
str[3..9] is "cd" str[3..0] is empty

5.3.2.5.3.4 Member Selection.

An expression of the form exp.member is a member selection expression. The first expression
must be a group or record. The second expression must be the identifier for a member of the
group or record. The result is the specified member.

Examples: assume list is the top-level repetition form Figure 5-5.

list[1].addr is the first addr record (that is, grp)
list[1].addr.street is "222B BAKER"

It is possible for a named member to occur more than once in a group or record. For example,
the following input grammar defines a group with two foo members:

input = rp5 { foo bar foo };

An expression of the form exp.number%member is also a member selection expression. The
number must be a numeric constant. It specifies the occurrence of the named member. For
example:

rp5[1].1%foo (1st foo member of 1st rp5 element)
rp5[1].2%foo (2d foo member of 1st rp5 element)

It is an error if the named member does not occur at least number times in the group or record.

CMP SUM VER. 1.0/1.1
2/20/97

140

5.3.2.5.3.5 Record Number.

An expression of the form rec.recno is a record number expression. The first expression must be
a record. The result is the ordinal number of that record in the input record stream. Input
records, which are discarded by MDLMAP because they do not match any record type or because
they have too many fields, are counted for the purpose of determining each record's number.

Examples: assume list is the top-level repetition from Figure 5-5.

list[1].person.recno is 2
list[1].addr.recno is 3
list[2].person.recno is 7

5.3.2.5.3.6 Record Tag String.

An expression of the form rec.tag is a record tag expression. The first expression must be a
record. The result is the tag string associated with the input record rec.

Examples: assume list is the top-level repetition from Figure 5-5:

list[1].person.tag is "PER"
list[1].addr.tag is "ADDRESS"
list[2].person.tag is "PER"

5.3.2.5.3.7 Record Tail Repetition.

An expression of the form rec.tail is a record tail repetition expression. The first expression must
be a record. The result is the tail repetition of the designated record. This value can then be
treated as any other repetition value.

If rec is a fixed-length record, or if its tail repetition contains no elements, then rec.tail returns the
empty value.

Examples: assume rec1 is the second sold record appearing in Figure 5-5:

rec1.dateis "02 MAY 1889"
rec1.tail is the tail repetition, containing two elements

 rec1.tail[1] is the first element of the tail repetition

rec1.tail[1].thingis "HORSE"
rec1.tail[2].thingis "CARRIAGE"

5.3.2.5.3.8 Qualification.

CMP SUM VER. 1.0/1.1
2/20/97

141

An expression of the form group { exp2 } is a qualification expression. The first expression must
be a group or record. The result is the value of the second expression, which is evaluated within
the local scope of group. That is, the members of group are defined as references within exp2.

Examples: assume that grp is the first addr record in Figure 5-5:

grp { street } is "222B BAKER"
grp { city } is "NEW YORK"

The first expression is evaluated once to establish the scope for the entire evaluation of the second
expression. For example, assume rep[i] is the first addr record in Figure 5-5. Then, in this
expression,

rep[i] {expr}

the value of street in expr is always "222B BAKER", even if the evaluation of expr changes the
value of i as a side-effect.

It is possible that a reference defined in the global scope will become inaccessible in the local
scope. For example, consider the following map file:

rec type = foo bar;
input = foo { rtype };
output = foo[1] { foo };

Within the qualified expression, the identifier foo refers to a record field, and not to the foo
repetition in the top-level input group. The local definition of foo is said to shadow the more
global definition, making it inaccessible within the local scope.

5.3.2.5.3.9 Repetition.

An expression of the form rep { loopexp } is a repetition expression. The first expression must be
a repetition. The second expression is evaluated in the scope of the elements of rep, once per
element. The resulting values are concatenated to form the result of the overall expression.

Example: assume that list is the top-level repetition in Figure 5-5:

list { addr.street "$" } is "222B BAKER$TALLBOYS$"

5.3.2.5.3.10 Indexed Repetition.

An expression of the form for [counter : from >> to] { loopexp } is an indexed repetition
expression. The counter must be an identifier. The from and to expressions must be numbers.

CMP SUM VER. 1.0/1.1
2/20/97

142

The third expression is evaluated zero or more times, depending on the values of from and to; the
resulting values are concatenated to form the result of the entire expression.

When an expression of this type is evaluated, the from and to expressions are evaluated and the
resulting values saved. Then, the counter variable is initialized to the value of the from
expression. Finally, as long as the value of the counter is less than or equal to the saved value of
the to expression, the loopexp expression is evaluated and the counter variable incremented by
one.

The counter variable is defined only within the scope of the loopexp expression. It is an error to
assign a new value to the counter variable within loopexp (see section 5.3.2.5.3.16).

The direction of the loop counter can be reversed; that is, the counter can be decremented with
each iteration. This has the form for [counter:to<<from]{ loopexp }. The counter variable is
still initialized to the value of the from expression. The loopexp expression is evaluated as long as
the value of counter is greater than or equal to the saved value of the to expression.

The counter variable can be omitted, giving the form for [from >> to] { loopexp } or for
[to<<from]{loopexp}. MDLMAP performs the same number of iterations; there simply is no
counter variable to use as a reference within the loopexp.

Examples: assume that list is the top-level repetition in Figure 5-5:

for [i:1>>5] {i ","} is "1,2,3,4,5,"
for [i:6>>5] {i ","} is ""
for [i:1<<3] {i ","} is "3,2,1,"
for [1>>5] {"0,"} is "0,0,0,0,0,"

for [i:1>>3] {i ":" list [i].per.last ","}

is "1:HOLMES,2:WIMSEY,3:,"

An alternate form of indexed repetition specifies a repetition instead of the for keyword; this has
the form rep [counter:from>>to] { expr }. The number of iterations is determined by the from
and to expressions, as before, but the loopexp expression is evaluated in the context of a particular
element of rep: when counter is 1, the first element, etc. When using this form, it is an error for
the counter variable to be less than 1. If counter is greater than the number of elements in the
repetition, then loopexp is evaluated in the context of the empty value.

Using the alternate form and specifying a repetition, it is possible to omit the from expression, the
to expression, or both. If the from expression is omitted, MDLMAP uses the value 1. If the to
expression is omitted, MDLMAP uses the length of the repetition.

Examples: assume that list is the top-level repetition in Figure 5-5. Then,

list [i:1>>3] {i ":" per.last "," }

CMP SUM VER. 1.0/1.1
2/20/97

143

is "1:HOLMES,2:WIMSEY,3:,"

list [i:] {i: ":" per.last ","}

is "1:HOLMES,2:WIMSEY,"

5.3.2.5.3.11 Length.

An expression of the form #exp is a length expression. The sub-expression must be a repetition or
string. The result is the number of elements in the repetition or the number of characters in the
string.

Examples: assume list is the top-level repetition in Figure 5-5.

#list is 2
#"abcde" is 5
#"" is 0

5.3.2.5.3.12 Logical NOT.

An expression of the form !expr is a logical NOT expression. The sub-expression must be a
number. The result is 1 (representing the true value) if the sub-expression has a the value zero;
the result is 0 (representing the false value) if the sub-expression is nonzero.

5.3.2.5.3.13 Arithmetic Operators.

An expression of the form exp1 op exp2, where op is one of the four arithmetic operators +, -, *,
or /, is an arithmetic expression. The two expressions must be numbers. The result is obtained by
applying the specified operation to the expression values:

+ is addition
- is subtraction
* is multiplication

 / is division; the result is the integer quotient

The most-positive and most-negative number accepted by MDLMAP is machine-dependent. It is
an error to exceed these limits. It is also an error if the second operand of the division operator is
zero.

5.3.2.5.3.14 Logical AND, Logical OR.

CMP SUM VER. 1.0/1.1
2/20/97

144

An expression of the form exp1 && exp2 is a logical AND expression. The first expression must
be a number. If exp1 is zero, then the result is zero. If exp1 is not zero, then exp2 is evaluated
(and must return a number); the result is zero if exp2 is zero, and one otherwise.

An expression of the form exp1 || exp2 is a logical OR expression. The first expression must be a
number. If exp1 is one, then the result is one. If exp1 is not one, then exp2 is evaluated (and
must return a number); the result is one if exp2 is one, and zero otherwise.

These expressions are two of the MDL expressions which guarantee an order of evaluation and
which do not always evaluate all of their sub-expressions.

5.3.2.5.3.15 Comparison Operators.

An expression of the form exp1 op exp2, where op is one of the following six operators, is a string
comparison expression. The two expressions must be strings. The result is one if the comparison
condition is true, and zero otherwise. The string comparison operators are:

== exp1 and exp2 are the same
!= exp1 and exp2 are not the same
> exp1 is greater than exp2
>= exp1 is greater than or equal to exp2
< exp1 is less than exp2
<= exp1 is less than or equal to exp2

String comparisons are made using the character set of the processor running the MDLMAP
program. This is almost always (but not necessarily) the ASCII character set.

A numeric comparison expression uses one of the following six operators. For these operators,
the two expressions must be numbers.

#== exp1 and exp2 are the same
#!= exp1 and exp2 are not the same
#> exp1 is greater than exp2
#>= exp1 is greater than or equal to exp2
#< exp1 is less than exp2
#<= exp1 is less than or equal to exp2

Because MDLMAP will always convert numbers to strings as needed, the string comparison
operators can sometimes yield surprising results. For example:

2 #< 10 is 1, because the number 2 is less than the number 10.
"2" < "10" is 0, because the first character of the string "2" is greater than the first character

of the string "10".
2 < 10 is 0, because the numbers are converted into strings, then compared.

CMP SUM VER. 1.0/1.1
2/20/97

145

It is good practice to use the numeric comparison operators whenever you wish to compare
numbers.

5.3.2.5.3.16 Assignment.

An expression of the form identifier = expr is an assignment expression. The expression must be
a number. The result of the expression is the empty string; however, as a side effect the identifier
is bound to a new variable that contains the value of expr. Subsequent references to identifier
within the current scope return the stored value.

Examples: assume list is the top-level repetition from Figure 5-5.

i=1 list [i].addr.street is "222B BAKER"
i=0 i=i+1 list[i].addr.street is "221B BAKER"

5.3.2.5.3.17 Conditional Evaluation.

An expression of the form exp1 ? exp2 : exp3 is a conditional evaluation expression. The first
expression must be a number. If exp1 is not zero, then exp2 is evaluated and its value returned as
the value of the entire expression. Otherwise, exp3 is evaluated and its value returned.

This is one of the MDL expressions that guarantees an evaluation order and does not always
evaluate all of its sub-expressions.

Examples:

0 < 2 ? "yes" : "no" is "yes"
0 > 2 ? "yes" : "no" is "no"

5.3.2.5.3.18 Iteration.

An expression of the form loop [testexp] { loopexp} is an iteration expression. The first
expression must be a number. The second expression is evaluated repeatedly, as long as testexp is
not zero; the results of the loopexp are concatenated to form the result of the entire expression.

Examples:

i=0 loop[i#<2]{i "," i=i+1} is "0,1,"
i=2 loop[i#<2]{i "," =i+1} is ""i

5.3.2.5.3.19 Built-In Functions.

CMP SUM VER. 1.0/1.1
2/20/97

146

An expression of the form func (arguments) is a function call expression. The first expression
must be one of the identifiers for the predefined MDL functions. The arguments part is a list of
zero or more expressions, separated by commas. The result is a string value computed from the
argument values by the predefined function.

Each predefined MDL function expects a certain number of arguments. It is an error if the
arguments list does not contain the expected number of arguments.

MDL functions do not change their arguments. They always construct a new value completely
separate from their arguments.

There is no way to add function definitions to a program. The predefined functions are the only
functions available. The following paragraphs present a description of these functions.

5.3.2.5.3.19.1 The Alphatrim Function.

This function requires one argument, which must be a string. It returns a copy of the string with
all leading and trailing white space removed.

Examples: (SPACE characters are represented by '.')

alphatrim("abcd") is "abcd"
alphatrim("abcd...") is "abcd"
alphatrim("...abcd") is "abcd"
alphatrim("..abcd..") is "abcd"

5.3.2.5.3.19.2 The Fail Function.

This function takes one argument, which must be a string. It causes MDLMAP to print the string
as an error message, and then abort execution.

5.3.2.5.3.19.3 The Getenv Function.

This function takes one argument, which must be a string. It returns the value of the environment
variable named by the string. If the current environment does not contain the named variable, the
empty value is returned.

Examples:

getenv("SHELL") is (probably) "/bin/csh"
getenv("UNDEF") is (probably) empty

5.3.2.5.3.19.4 The Isnum Function.

CMP SUM VER. 1.0/1.1
2/20/97

147

This function takes one argument, which must be a string. It returns 1 if the argument is a
number 0, otherwise.

Examples:

isnum("123") is 1
isnum("-123:) is 1
isnum("123abc") is 0
isnum("foo123") is 0

5.3.2.5.3.19.5 The Justleft Function.

This function requires two arguments. The first argument must be a string; the second argument
must be a number. It returns a copy of the string argument, appending SPACE characters as
necessary to make the returned value at least as long as specified by the second argument.

Examples: (SPACE characters are represented by '.')

justleft("abcd", 6) is "abcd.."
justleft("abcd", 2) is "abcd"
justleft("", 2) is ".."

CMP SUM VER. 1.0/1.1
2/20/97

148

5.3.2.5.3.19.6 The Justright Function.

This function requires two arguments. The first argument must be a string; the second argument
must be a number. It returns a copy of the string argument, pre-pending SPACE characters as
necessary to make the returned value at least as long as specified by the second argument.

Examples: (SPACE characters are represented by a '.')

justright("abcd", 6) is "..abcd"
justright("abcd", 2) is "abcd"
justright("", 2) is "..."

5.3.2.5.3.19.7 The Numtrim Function.

This function requires one argument. If this argument is a number, then it returns a copy of the
number with all leading zeros and plus sign characters removed. If the argument is not a number,
then numtrim simply returns a copy of the string.

Examples:

numtrim("00123") is "123"
numtrim("+00123") is "123"
numtrim("-00123") is "-123"
numtrim("999") is "999"
numtrim("abcd") is "abcd"

5.3.2.5.3.19.8 The Tagct Function.

This function requires an empty argument list. It returns the number of records read from the
input text, including those rejected because they did not match any record type or had too many
fields.

5.3.2.5.3.19.9 The Truncate Function.

This function requires two arguments. The first argument must be a string; the second argument
must be a number. It returns a copy of the string argument, removing characters from the right as
necessary to make the returned string no greater than that specified by the second argument.

It is an error if the second argument is less than zero.

Examples:

truncate("abcde", 2) is "ab"

CMP SUM VER. 1.0/1.1
2/20/97

149

truncate("abcde", 8) is "abcde"

CMP SUM VER. 1.0/1.1
2/20/97

150

5.3.2.5.3.19.10 The Undefined Function.

This function requires an empty argument list. It returns the undefined value.

5.3.2.5.3.19.11 The Warn Function.

This function requires one argument, which must be a string. It causes MDLMAP to write the
string as a warning message. It returns the empty value.

5.3.3 Command-Level Interface to MDLMAP

MDLMAP runs as an independent program. When executed, it expects to receive command-line
arguments telling it where to find its map file and input text, and where to write the output it
produces. When MDLMAP terminates, it returns an exit status code to indicate whether errors
were encountered during execution. Together the arguments and exit status make up the
command-level interface to MDLMAP, which is described in this section.

This section uses the following typographical conventions:

a. Typewriter type represents output from the computer.
b. Bold type represents something that must be typed exactly.
c. Italic type represents a placeholder for something that must be provided.
d. Items in square brackets (e.g., [item]) are optional; they may be included or omitted.

5.3.3.1 Arguments to MDLMAP.

The usual way to invoke MDLMAP is through the following command:

mdlmap mapfile

Mapfile is the name of the file containing the MDL program to be executed. By default,
MDLMAP expects to read its input text from the standard input, and write its output to the
standard output. This behavior may be altered through the command-line options described
below.

The complex syntax for invoking the MDLMAP program is:

mdlmap [-dtv][-m mapfile][-i input][-o output][mapfile [input [output]]]

Arguments that do not begin with a '-' character are interpreted by position. The first such
argument is the name of the map file, the second is the name of the input text file, and the third is
the name of the output file. For example:

CMP SUM VER. 1.0/1.1
2/20/97

151

mdlmap mfile map file in mfile, input text from the standard input, output to the standard
output.

mdlmap mfile ifile map file in mfile, input text from ifile, output to the standard
output.

mdlmap mfile ifile ofilemap file in mfile, input text from ifile, output to ofile.
Arguments that begin with a '-' character may appear in any order as long as they all precede the
positional arguments described above. These arguments have the following meanings:

-d Display (voluminous) information about what MDLMAP is doing and why it is
doing it.
-i inputfile Obtain the input text from inputfile.
-m mapfileObtain the map file from mapfile. If this argument is '-', obtain the map file
from the standard input.
-o outputfile Write the result of the output expression to outputfile.
-t Check the map file for MDL errors. Do not process any output text.
-v Print the identification of this version of MDLMAP.

Certain arguments may be supplied by position or by option-letter. This means that there are
several ways to specify the same behavior. For example, all three of the following commands will
obtain the map file from m1, read the input text for i2, and write the result to o3.

mdlmap m1 i2 o3
mdlmap -o o3 -i i2 -m m1
mdlmap m1 < i2 > o3

It is possible to obtain both the map file and the input text from the standard input. For example,
the following will work properly, provided that the map file does not contain any extraneous text
following the MDL output expression:

cat m1 i2 | mdlmap -> o3

5.3.3.2 Exit Status Returned by MDLMAP.

When MDLMAP terminates, it returns an exit status code to the program that invoked it. This
code allows the invoking program to determine whether MDLMAP encountered any errors
during it execution, and if so, the nature of the errors.

MDLMAP returns one of the following six exit codes:

CMP SUM VER. 1.0/1.1
2/20/97

152

a. No errors were encountered during processing.
b. Errors occurred while compiling the MDL map file.
c. Errors occurred while parsing the input text file.
d. Errors occurred while evaluating the output expression.
e. The command-line arguments to MDLMAP were not valid.
f. An unknown, internal error occurred.

5.3.4 An MDL Tutorial

This section is a brief introduction to writing MDL programs. We describe the typical use of
MDLMAP, introduce a specific, hypothetical task, and provide MDL map files for several
variations on this task.

5.3.4.1 Automatic Message Generation.

MDLMAP is generally used as a part of a process known as automatic message generation. In
this process, information is extracted from one or more operational databases, then reformatted to
form part or all of a USMTF or ADatP-3 message.

MDLMAP is only a part of the automatic message generation process. The person in charge of
the operational database is responsible for creating the report generator, which performs the data
extraction. This report generator must produce its output in the "records-of-fields" format, which
MDLMAP accepts as its input. Once the report generator is ready, the person in charge of
MDLMAP must write the MDLMAP map file to transform the report generator's output into the
desired message text format. The two programs, executed in sequence, produce message text
containing information from the current state of the database.

5.3.4.2 A Typical Task: Generating TACELINT Messages.

For the remainder of this section, we will assume that our task is to generate TACELINT
messages from the MTF standard. These messages are used to report time-critical electronic
intelligence (ELINT) information. Figure 5-7 contains a brief description of the segments, sets,
and fields in this message type. (For a complete description, refer to Joint Publication 6-04, the
USMTF standard document.)

Because this is merely an example, and not a true TACELINT message generator, we will omit
many of the details that would otherwise be required. We will assume that there is a database
containing the ELINT information we want to report; however, we will not be concerned with its
internal structure. We will also assume that the report generators exist but will not be concerned
with their implementation. In our examples, we will simply state, "the output of the report

CMP SUM VER. 1.0/1.1
2/20/97

153

generator is..." without supplying complete details of how that output might be generated.
Finally, we will ignore many of the fields that should be part of a TACELINT message, including
only those necessary for the tutorial examples.

5.3.4.2.1 Example #1: Generating a Single Contact.

We begin with a simple task. Suppose we want to generate a Signal Operating Instructions (SOI)
and Emitter Location (EMLOC) set for a single contact. We assume that our output generator
produces a single untagged record for the contact containing all of the fields we require. The
MDL input specification for this record is listed as follows:

separator=',';
terminator='\n';
rec contact =

tsi //target signal identifier (SOI.1)
dtime //detection tiem (SOI.2)
1time //time lost (SOI.3)
enot //ELINT notation or sorting code (SOI.4)
emdesig //emitter designation (SOI.5)
ldcat //emitter location data category (EMLOC.2)
loc; //location (EMLOC.3)

input = contact ;

Generating this kind of input record might require nothing more than a qualified retrieval from the
database table containing contact information. The SQL statement executed by the report
generator is:

SELECT TSI, DTIME, LTIME, ENOT, EMDESIG, LDCAT, LOC
FROM table WHERE condition

CMP SUM VER. 1.0/1.1
2/20/97

154

TACELINT Format Summary
The TACELINT message is used to report time-critical operational
electronic intelligence information. The sequence of sets in the
message format is described in the following table.
 occur-

rence set ID field occurrence set format name
C EXER /M/O// exercise information
C OPER /M/O/O/O// operation identification

data
M MSGID /M/M/O/O/O/0// message identification

*O REF /M/M/M/M/O/O/*O// reference
C AMPN /M// amplification
C NARR /M// narrative information
C COLLINFO/C/C/C/C// collector information

[M SOI /M/M/M/M/M/C/C/C/C/C// ELINT operational
information

[* C EMLOC /M/M/M/C/C/C/C// emitter location
[* C PRM /M/M/O/M/C/M/C/C/O// signal analysis information
[* O PLATID /M/M/M/M/M/O/O/O// platform identity

C DECL /M// declassification data

The occurrence code "C" represents "conditional," "M" is
"mandatory," "O" is "optional," and "*" is "repeatable." The "["
code indicates that the sets SOI, EMLOC, PRM, and PLATID may be
repeated as a segment for reporting multiple signals.
Descriptions of some fields in the message are given below:
 set and

field # field description
SOI.1 target signal identifier--code which identifies the

detected signal
SOI.2 detection time--date-time group for time signal

first detected
SOI.3 time lost--date-time group for time signal last

heard
SOI.4 ELINT notation
SOI.5 emitter designation--nickname assigned to emitter
EMLOC.1 data entry--number correlating EMLOC and PRM sets
EMLOC.2 location data category--code describing emitter

location (precise, estimated, etc.)
EMLOC.3 location
PRM.1 data entry--number correlating EMLOC and PRM sets
PRM.2 radio frequency
PRM.3 RF operational mode
PLATID.1 ship control number
PLATID.2 platform type--ship, aircraft, submarine, etc.
PLATID.3 ship type, or submarine type, or aircraft model

CMP SUM VER. 1.0/1.1
2/20/97

155

For a complete description of the TACELINT message, consult JCS
Publication 6-04.

Figure 5-8. An Abridged Description of the TACELINT Message

where table denotes the database table containing contact information, and condition is a test that
eliminates all but a single row in that table. Here is a sample record produced by the report
generator meeting the MDL input specification:

21345, 060821Z, 060821Z, XXXXX, LOUDMOUTH,E,LC:435240.5N0751826.4W

To form the output, we simply rearrange the input fields adding the set identifiers and field
separators as necessary. The MDL output expression that transforms the input record into the
SOI and ELOC sets we desire is shown as follows:

output = contact {

'SOI/' tsi '/' dtime '/' ltime '/' enot '/' emdesig '//\n'
'EMLOC/-/' ldcat '/' loc '//\n'};

Given the input record and MDL program above, MDLMAP produces the following two sets as
its output:

SOI/21345/060821Z/060821Z/XXXXX/LOUDMOUTH//

EMLOC/-/E/LC:435240.5N0751826.4W//

5.3.4.2.2 Example #2: Generating Multiple Contacts.

Our ELINT database is sure to contain many contacts, so we will probably have to report several
contacts in a single message. Using the approach in the previous example, we would need to run
MDLMAP and the report generator once per contact. A better approach is to run the report
generator once, extracting information for all of the contacts to be reported, and then run
MDLMAP once to generate an SOI and EMLOC set for each contact. This example
demonstrates this approach.

We assume that we want to generate a message reporting all contacts detected by a particular
ELINT collector on a particular day. The report generator executes this query:

CMP SUM VER. 1.0/1.1
2/20/97

156

SELECT COLL,TSI,DTIME,LTIME,ENOT,EMDESIG,LDCAT,LOC

FROM table WHERE COLL=code AND time-condition
The code denotes the ELINT collector of interest, and time-condition is a test that excludes all
rows not corresponding to the date of interest. Here is a sample of the output from the report
generator:

AA,21345,060821Z,060821Z,XXXXX,LOUDMOUTH,E,LC:435240.5N0751826.4W

AA,21346,061021Z,-,XXXXX,FROGGER,E,LC:435240.5N0751826.4W
This input specification in our MDL program must change to accommodate the new field and the
possibility of multiple input records. The new grammar is demonstrated as follows:

separator=',';
terminator='\n';
rec contact =

coll // denotes the ELINT collector (COLLINFO.1)
tsi // target signal identifier (SOI.1)
dtime // detection time (SOI.2)
1time // time lost (SOI.3)
enot // ELINT notation or sorting code (SOI.4)
emdesig // emitter designation (SOI.5)
1dcat // emitter location data category (EMLOC.2)
loc; // location (EMLOC.3)

input = rep { contact };
We must also change the output expression so that it executes the contact qualification expression
once per input record. The new output expression is:

output = rep { contact {
'SOI/' tsi '/' dtime '/' 1time '/' enot '/' emdesig '//\n'
'EMLOC/-/' 1dcat '/' loc '//\n'}};
When we run MDLMAP on the sample input records above, it produces the following sets as its
output:

SOI/21345/060821Z/060821Z/XXXXX/LOUDMOUTH//
EMLOC/-/E/LC:435240.5N0751826.4W//
SOI/21346/061021Z/-/XXXXX/FROGGER//
EMLOC/-/E/LC:435240.5N0751826.4W//

5.3.4.2.3 Example #3: Generating a COLLINFO Set.

We can extend the previous example by generating a COLLINFO set to describe the source of the
reported contacts. A message contains a single COLLINFO set no matter how many contacts are

CMP SUM VER. 1.0/1.1
2/20/97

157

reported. We modify the output expression from the previous example to generate this initial set,
as follows:

output =
// Generate the initial COLLINFO set, using info from the 1st
record
COLLINFO '/' rep[1].contact.coll '//\n'
// Now generate one segment per input record
rep { contact {
'SOI/' tsi '/' dtime '/' 1time '/' enot '/' emdesig '//\n'
'EMLOC/-/' 1dcat '/' loc '//\n'}};
Using the new output expression and the input records from the previous example, MDLMAP
produces the following output text:

COLLINFO/AA//
SOI/21345/060821Z/060821Z/XXXXX/LOUDMOUTH//
EMLOC/-/E/LC:435240.5N0751826.4W//
SOI/21346/061021Z/-/XXXXX/FROGGER//
EMLOC/-/E/LC:435240.5N0751826.4W//

5.3.4.2.4 Example #4: Generating Repeated EMLOC Sets.

In the previous examples, we have assumed that we wish to produce exactly one EMLOC set for
each source. However, the EMLOC set may be repeated in order to report multiple locations for
a source, or it may be omitted entirely. In this example, we show how to generate repeated
EMLOC sets.

We assume that the target signal identifier (tsi) and detection time (dtime) fields uniquely identify
a contact; that is, if two records have the same tst and dtime fields, then they must contain
information about the same contact. In order to group related records together, we add an
ORDER clause to the report generator's SQL query, which now reads as follows:

SELECT COLL,TSI,DTIME,LTIME,ENOT,EMDESIG,LDCAT,LOC
FROM table WHERE COLL=code AND time-condition
ORDER BY TSI,DTIME

The output of the report generator does not change, except that there may be several records for
the same contact. For example, the report generator may produce two records for contact
#21345, one for contact #21346, and one for contact #21347, as follows:

AA,21345,060821Z,060824Z,XXXXX,LOUDMOUTH,E,LC:435240.5N0751826.4W
AA,21345,060821Z,060824Z,XXXXX,LOUDMOUTH,E,LC:435240.9N0751826.4W
AA,21346,061021Z,061044Z,XXXXX,FROGGER,F,LC:435233.2N0751823.3W
AA,21347,061044Z,061045Z,XXXXX,PACMAN
We assume that when there is no location information about a contact, the report generator omits
those fields. In the input records above, it is up to us to notice that the first two records refer to a
single contact, and then to produce one SOI and two EMLOC sets in that segment. We also must

CMP SUM VER. 1.0/1.1
2/20/97

158

notice that the last record contains no location fields, and then produce an SOI set with no
EMLOC set in that segment. Our output should be:

COLLINFO/AA//
SOI/21345/060821Z/060824Z/XXXXX/LOUDMOUTH//
EMLOC/-/E/LC:435240.5N0751826.4W//
EMLOC/-/E/LC:435240.9N0751826.4W//
SOI/21346/061021Z/061044Z/XXXXX/FROGGER//
EMLOC/-/F/LC:435233.2N0751823.3W//
SOI/21347/061044Z/061045Z/XXXXX/PACMAN//

The input specification in this example is the same as in the previous example. Only the output
expression needs to be changed. We add two conditional expressions. The first conditional
expression suppresses the SOI set if the target signal identifier and detection time match those of
the previous record. The second conditional expression suppresses the EMLOC set if the current
record does not contain fields for this set. The new output expression is as follows:

output =
//Generate the initial COLLINFO set, using info from the 1st
record
COLLINFO '/' rep[1].contact.coll '//\n'
// The 1st record can't continue the previous contact
lastTSI=''
lastDTIME=''
//Generate one segment per input record
rep { contact {
// If tsi and dtime match fields in previous, skip SOI set
(tsi != lastTSI || dtime != lastDTIME) ?
'SOI/' tsi '/' dtime '/' 1time '/' enot '/' emdesig '//\n' :

''
// If no location info in this record, skip EMLOC set
(1dcat != '') ?
'EMLOC/-/' 1dcat '/' loc '//\n' :

''
// Remember tsi and dtime fields to compare against next record
lastTSI=tsi
lastDTIME=dtime

}};

5.3.4.2.5 Example #5: Generating a Complete TACELINT Message.

In the previous examples, we have assumed that the report generator executes a single SQL query
and produces a single type of record containing all the information we need about a particular
contact. MDLMAP is capable of more powerful processing if the report generator executes
multiple queries, producing different kinds of records. In this example, we will show how to
construct a complete TACELINT message from information extracted by four SQL queries.

CMP SUM VER. 1.0/1.1
2/20/97

159

These are the tasks to be performed:

1. Generate a MSGID set, a DECL set, and (optionally) a COLLINFO set from the
information contained in an initial header record.

2. Generate one SOI segment for each contact reported in a series of soi records.
3. Generate the EMLOC sets for each segment from a series of emloc records.
4. Generate PRM sets for each segment from a series of prm records. We must create

data entry numbers for the EMLOC and PRM sets to show correspondences between
the two.

5. Generate PLATID sets for each segment from a series of platid records.

To create the five kinds of input records for MDLMAP, we could run a single report generator
that executed five SQL queries, one per record. Or, we could run five separate report generators,
each executing a single query, and concatenate the results. Or, because the header record
contains information that might not be part of our database, we might generate the header record
with one program and the other records with the report generator. In all of these cases,
MDLMAP receives the same input, and so produces the same result.

The MDL input specification for this example is presented below. It defines the five input record
types and specifies the sequence in which these records must appear.

separator=',';
terminator='\n';
rec header 'H' =

orig // message originator (MSGID.2)
serialnum // message serial number (MSGID.3)
month // month name (MSGID.4)
qual // message qualifier [amplification, etc]

(MSGID.5)
qualsnum // original message serial number (MSGID.6)
coll // collector identifier (COLLINFO.1)
decl; // declassification date (DECL.1)

rec soi 'S' =
tsi // target signal identifier (SOI.1)
dtime // detection time (SOI.2)
ltime // time lost (SOI.3)
enot // ELINT notation or sorting code (SOI.4)
emdesig; // emitter designation (SOI.5)

rec emloc 'E'
tsi // target ID [matched to soi.tsi]
dtime // detection time [matched to soi.dtime]
ldcat // emitter location category (EMLOC.2)
loc; // location (EMLOC.3)

rec prm 'P' =
tsi // target ID [matched to emloc.tsi]
dtime // detection time [matched to emloc.dtime]

CMP SUM VER. 1.0/1.1
2/20/97

160

loc // location [matched to emloc.loc]
freq // radio frequency (PRM.2)
mode // RF operational mode (PRM.3)
pfreq // pulse interval/frequency (PRM.4)
pdur; // pulse duration (PRM.6)

rec platid 'PL' =
tsi // target ID [matched to soi.tsi]
dtime // detection time [matched to soi.dtime]
shipnum // ship control number (PLATID.1)
ptype // platform type detected (PLATID.2)
stype // ship type (PLATID.3)
sclass // ship class name (PLATID.4)
sname; // ship name (PLATID.5)

input =
header // a single header record
sois { soi } // followed by any number of soi

recs
emlocs { emloc } // followed by any number of emloc

recs
prms { prm } // followed by any number of prm

recs
platids { platid }; // followed by any number of platid

recs

The following is an example of the input records matching this input specification:

H,VMAQ1,0614024,JUN,-,-,AA,31DEC92
S,21345,060821Z,060824Z,XXXXX,LOUDMOUTH
S,21346,061021Z,061044Z,XXXXX,FROGGER
S,21347,061044Z,061045Z,XXXXX,PACMAN
E,21345,060821Z,E,LC:435240.5N0751826.4W
E,21345,060821Z,E,LC:435240.9N0751826.4W
E,21346,061021Z,F,LC:435233.2N0751823.3W
P,21345,060821Z,LC:435240.5N0751826.4W,00985.5MHZ,D,PRI:001085.98
7,-
,PD:0.450
P,21345,060821Z,LC:435240.5N0751826.4W,-,-,PRI:000521.162,-,-
P,21345,060821Z,LC:435240.5N0751826.4W,-,-,PRI:000564.735,-,-
P,21345,060821Z,LC:435240.9N0751826.4W,00985.5MHZ,D,PRI:001055.98
7,-
,PD:0.400
PL,21345,060821Z,22022,SHIP,DD,SPRUANCE,CUSHING
PL,21346,061021Z,-,ACFT,F15,-,-
The output expression presented below produces the TACELINT message in several stages.
First, it creates the MSGID and COLLINFO sets using the technique described in section
5.3.4.2.3. Then, it loops through the soi records, producing one SOI segment for each record.
For each SOI segment, it first prints the SOI set. Then, it loops through the emloc records,
producing an EMLOC set for each record that matches the current segment. It does the same for

CMP SUM VER. 1.0/1.1
2/20/97

161

the prm and platid records. Finally, when all SOI sets have been produced, it writes the DECL
set.

output =
// Produce MSGID set
'MSGID/TACELINT/' header.orig '/' header.serialnum '/'
header.month '/' header.qual '/' header.qualsnum '//\n'

// Produce COLLINFO set if collector ID supplied
(header.coll != '') ? ('COLLINFO/' header.coll '//\n') : ('')
// Produce one SOI segment for each soi record
sois {
// Produce the SOI set
'SOI/' soi.tsi '/' soi.dtime '/' soi.ltime '/'
soi.enot '/' soi.emdesig '//\n'

// Produce the EMLOC sets, generating data entry numbers
de = 1
emlocs { emloc {
(tsi==soi.tsi && dtime==soi.dtime) ?
('EMLOC/' de '/' ldcat '/' loc '//\n' de=de+1)

('')
}}

// Produce the PRM sets, generating data entry numbers
prms { prm {
(tsi==soi.tsi && dtime==soi.dtime) ?
(de = 1 pde = '-'
emlocs {
(emloc.tsi==soi.tsi && emloc.dtime==soi.dtime) ?
(de=de+1
(emloc.loc==loc) ? pde=de : '')

('')}
'PRM/' pde '/' freq '/' mode '/' pfreq '/' pdur '//\n')

('')
}}

// Produce the PLATID sets
platids { platid {
(tsi==soi.tsi && dtime==soi.dtime) ?
('PLATID/' shipnum '/' ptype '/' stype '/'
sclass '/' sname '//\n')

('')
}}

}
// Produce the DECL set
'DECL/' header.decl '//\n'

;

When executed on the sample input records, MDLMAP produces the following output:

MSGID/TACELINT/VMAQ1/0614024/JUN/-/-//
COLLINFO/AA//

CMP SUM VER. 1.0/1.1
2/20/97

162

SOI/21345/060821Z/060824Z/XXXXX/LOUDMOUTH//
EMLOC/01/E/LC:435240.5N0751826.4W//
EMLOC/02/E/LC:435240.9N0751826.4W//
PRM/01/00985.5MHZ/D/PRI:001085.987/-/PD:0.450//
PRM/01/-/-/PRI:000521.162/-/-//
PRM/01/-/-/PRI:000564.735/-/-//
PRM/02/00985.5MHZ/D/PRI:001055.987/-/PD:0.400//
PLATID/22022/SHIP/DD/SPRUANCE/CUSHING//
SOI/21346/061021Z/061044Z/XXXXX/FROGGER//
EMLOC/01/F/LC:435233.2N0751823.3W//
PLATID/-/ACFT/F15/-/-//
SOI/21347/061044Z/061045Z/XXXXX/PACMAN//
DECL/31DEC92//

5.4 BIT-ORIENTED MESSAGE (BOM) TO CHARACTER-ORIENTED MESSAGE
(COM) TRANSLATOR

5.4.1 Identification

The paragraph describes version 1.0, release 1 of the BOM-to-MTF Translator software CSCI for
the Army COE Message Block.

5.4.2 System Overview

The purpose of the Army COE message block software is to handle the dissemination and
generation of various message sets such as the USMTF, ACCS, and BOM messages. The
primary components of the message block are: the Message Parser Module; the Message
Generation Module; the Normalization Library; the DCE-based Journaling Server; and the BOM-
to-MTF message translator. The purpose of the message parser system is to process inbound
messages, extracting information that is pertinent to the user. The purpose of the message
generation software is to provide a GUI for the generation of messages. The purpose of the
Normalization software is to convert the message data into a format usable by the host application
software and vice versa. The purpose of the DCE Journaling Server is to provide an operational
message journal for both inbound and outbound messages. The purpose of the BOM-to-COM
software is to convert Bit-Oriented Messages to Character-Oriented Messages and Character-
Oriented Messages to Bit-Oriented Messages.

5.4.3 Document Overview

CMP SUM VER. 1.0/1.1
2/20/97

163

The purpose of this paragraph is to describe the BOM/COM translator software CSCI, its
functionality, the API, and its rules for usage. This paragraph contains the following sections:
Reference Documents, Execution Procedures, and Error Messages.

5.4.4 Reference Documents

Document Number Title
WP94B0000076 The Joint Message Analysis and Processing

System (JMAPS) User's Manual

5.4.5 Installation

5.4.5.1 Installation of the Message Format Data Definition Database. The Message
Format Data Definition (MFDD) database must be installed prior to executing the
BOM/COM translator. Install your system-specified database, i.e., INFORMIX, Sybase,
etc. Then, access the MFDD directory from the BOM/COM installation tape. This
directory contains the Structured Query Language (SQL) scripts necessary to create the
MFDD database and MFDD tables. Next, load the database. Once the MFDD database is
installed, proceed with the installation of the BOM/USMTF translator.

5.4.5.2 Installation of the BOM/COM Translator. To install the BOM/COM
translator, un-tar the software from the installation tape. Under the MTS directory, the
following two sub-directories will exist: B2C and C2B. The B2C directory contains the
BOM/COM CSCI. The C2B directory contains the COM/BOM software CSCI. The
CSCIs will be configured for the requested platform (INFORMIX, Sybase, etc.). To
reconfigure for a different platform, perform the following tasks: type make -
f<makefile.informix or makefile.sybase>, depending on which database you are using.

5.4.6 Execution Procedures

5.4.6.1 Initialization.

The only initialization required for the BOM/COM translator is for the database software to be
loaded and executing. If your installed database is not named 'mfdd', then set an environment
variable DB to the name of the installed database.

5.4.6.2 User Inputs.

The calling sequence for the BOM/COM and COM/BOM translators is shown as follows:

CMP SUM VER. 1.0/1.1
2/20/97

164

B2C<client/server><filename> , where client specifies a DD173 header and server specifies a
Comm Free Header where filename is the file containing the Bit Oriented Message.

C2B<filename> , where filename is the file containing the Character Oriented Message.

5.4.6.3 System Inputs.

The system inputs to the BOM/COM translator consist of the MFDD database which was
installed under the user-specified DBMS (see Section 5.4.5).

5.4.6.4 Termination.

The BOM/COM translator software is a callable function. Use of the BOM/COM translator
places no special termination constraints on the calling application.

5.4.6.5 Outputs.

The output of the B2C function is a file containing the converted COM. The output of the C2B
function is a file containing the converted BOM.

5.4.7 ERROR MESSAGES

The following is a listing of the error messages output by the B2C and C2B software, the
associated meaning of the message, and the action taken when each message appears.

<TBD>

5.4.8 "Customization of the BOM/COM Translator"

<TBD>

5.4.9 "Example Usage of the BOM/COM Translator"

<TBD>

5.5 MESSAGE JOURNALING SERVER

5.5.1 Identification

CMP SUM VER. 1.0/1.1
2/20/97

165

This section describes the journaling module of the CMP Version 1.2.x.x for the COE Message
Block. The purpose of the DCE Journaling server is to provide an operational message journal
for both inbound and outbound messages, and to allow lookup and retrieval of information
contained in the message, or retrieval and manipulation of the message.

5.5.2 Section Overview

This section contains the following subsections: Reference Documents, Installation Procedures,
Execution Procedures, and Error Messages.

5.5.3 Reference Documents

Document Number Title
TR-32-95 The BOM-to-COM Translator

User's Manual

5.5.4 Installation Procedure - Refer to Appendix A of this document.

5.6 MTF STAND-ALONE TOOLS

Some of the services that the Message Parser performs are available as separate tools. These
tools are independent programs, each performing a single function. They are invoked by a user
from a shell prompt in the same way that standard UNIX utilities (for example, ls and cat) are
invoked. They do not depend on or interact with the parser Message Processor (MP) or User
Interface (UI) described in the previous sections. These tools provide the following services:

a. Validate a message and output an error report
b. Execute a JQL query on a message and output the query results
c. Output a message in report format
d. Generate a message from data extracted from a database.

5.6.1 The MTFVAL Tool

The mtfval tool is a message-validation tool. It accepts a single message on standard input or a
list of message file names as its command-line arguments. This tool validates each message and
produces an error report for each message that contains one or more errors. No output is
produced for a correct message.

CMP SUM VER. 1.0/1.1
2/20/97

166

The mtfval tool accepts the following optional command-line arguments:

-v If mtfval is reading from files named on the command line, then the name of each
input file is printed before the error report for that file. File names are printed for both
correct and incorrect messages.
-o outputfile

All output is written to outputfile instead of the standard output.

5.6.2 The MTFXTRACT Tool

The mtfxtract tool executes JQL queries on messages. The queries and messages are specified in
the command-line arguments, mtfxtract processes its arguments from left to right. Each
argument is one of the following:

-q means that the next argument contains the text of a query. This becomes the
current query. (It is necessary to quote the query text to keep the shell from
expanding meta characters and breaking them into separate words.)
-qf means that the next argument is the name of a file that contains a query. This
becomes the current query.
-o means that the next argument is the name of an output file. mtfxtract will write all
subsequent output to this file. The current contents of the file, if any, are lost.

Anything else is taken as the name of a file that contains a message. mtfxtract applies the current
query to the message and outputs the query results. It is an error to supply a message if there is
no current query.

The single character "-", when used in the place of a query or message file name, tells mtfxtract
to read the query or message from its standard input instead of from a file.

5.6.3 The MTFREPORT Tool

The mtfreport tool prints a message in report format. It expects a single command-line
argument, which is the name of a file containing a message. It writes the message in report format
to its standard output. If the single character "-" is given in the place of a filename, mtfreport
reads the message from its standard input instead of from a file.

CMP SUM VER. 1.0/1.1
2/20/97

167

6 NOTES

6.1 ACRONYM LIST

Acronym Definition

ACC Air Combat Command
ACCS Army Command and Control System
ACOE Army Common Operating Environment
ACP Allied Communications Publication
ADatP-3 Allied Data Publication 3
AFATDS Advanced Field Artillery Tactical Data System
AFB Air Force Base
AI Applications Interface
AMHS Automated Message Handling System
API Application Programming Interface
ASCII American Standard Code for Information Interchange
ATCCS Army Tactical Command and Control Systems
ATOCONF Air Tasking Order/Confirmation
ATTable Application Trigger Table
AUTODIN Automatic Digital Network
B2C The BOM-to-COM translator
BFA Battlefield Functional Area
BOM Bit-Oriented Message
C2 Command and Control
C2B The COM-to-BOM translator
C3I Command, Control, Communications, and Intelligence
C4I Command, Control, Communications, Computers, and

Intelligence
C4IFTW C4I for the Warrior
CASS Common ATCCS Support Software
CCP Communications Protocol Preprocessor
CDBS Central Database System
CHS Common Hardware and Software
CMP Common Message Processor
COE Common Operating Environment
COM Character-Oriented Message
COMCAT Character-Oriented Message Catalog
CPP Communications Protocol Preprocessor
CSCI Computer Software Configuration Item
CSS CASS Segment Specification

CMP SUM VER. 1.0/1.1
2/20/97

168

CTAPS Contingency Theater Automated Planning System
CUI CMP User Interface
DBMS Database Management System
DCE Distributed Computing Environment
DII Defense Information Infrastructure
DISA Defense Information Systems Agency
DOD Department of Defense
DOI DSCS Operating Instructions
DSCS Defense Satellite Communications Systems
DSSCS Defense Special Security Communications Systems
DTG Date Time Group
EAST_NORTH Easting, Northing and Grid Zone
ELINT Electronic Intelligence
EMLOC Emitter Location
ERTM ELINT Requirement Tasking Messages
GCCS Global Command and Control System
GUI Graphical User Interface
HP Hewlett-Packard
HQ Headquarters
HW Hardware
IDL Interface Design Language
IEW Intelligence and Electronic Warfare
IMP Inbound Message Processor
IPC Inter-process Communication
JAMPS Joint Automated Message Preparation System
JANAP Joint Army, Navy, Air Force, Publication
JCS Joint Chiefs of Staff
JMAPS Joint Message Analysis Processing System
JMPS Joint Message Preparation System
JQL JMAPS Query Language
JUDI Joint Universal Data Interpreter
LAT_LONG Latitude/Longitude
Log System Log
MCS Maneuver Control System
MDL Map Definition Language
MFDD Message Format Definition Database
MGRS Military Grid Reference System
MIL STD Military Standard
MIO Message Input/Output
MP Message Processor
MsgBase Message Base
MTS Marine Tactical System

CMP SUM VER. 1.0/1.1
2/20/97

169

NATO North Atlantic Treaty Organization
NCTSI Navy Center for Tactical Systems Interoperability
NESEA Naval Electronic Systems Engineering Activity
ODB Operational Database
OMG Outbound Message Generator
OSF Open Software Foundation
OTH Over the Horizon
PLA Plain Language Address
PQL Parser Query Language
PREP Message Preparation
Pub. 6-04 Joint Publication 6-04
QBase Query Base
QRBase Query Report Base
RAM Random Access Memory
RPC Remote Procedure Call
SECS Seconds
SOI Signal Operating Instructions
SQL Structured Query Language
SUN SUN Microsystems
SW Software
TAFIM Technical Architecture for Information Management
TBM Theater Battle Management
UI User Interface
USAF U.S. Air Force
USMTF United States Message Text Format
USSID United States Signals Intelligence Directive
WCCS Wing Command and Control System

CMP SUM VER. 1.0/1.1
2/20/97

170

6.2 GLOSSARY

TERMS
Allied Data Publication 3: A NATO formatted text message standard.

automatic message generation: The process of populating the fields of a formatted message
using information extracted from one or more operational databases.

comment: Descriptive text that is part of a program but has no effect on its behavior.

field: In formatted text, a sequence of characters delimited by a separator or terminator string.

grammar: In MDL, a definition of all of the valid sequences of records in the input text.

group: In MDL, an ordered sequence of elements to be found in the input text. The members of
a group are either records or repetitions.

identifier: In MDL, a name supplied by the programmer.

Map Definition Language: A special-purpose language that defines a transformation between
an input and an output text format.

map file: A program written in MDL.

number: In MDL, an integer represented as a sequence of digits, optionally preceded by a plus
(+) or minus (-) sign.

operational database: A database containing information used by a tactical battle management
system.

parse: The process of determining how a particular sequence of input records may be validly
derived from an input grammar

parse tree: A data structure showing how a sequence of input records are combined into groups
and repetitions according to the input grammar. It is constructed during the parsing process.

record: In formatted text, a sequence of fields ending in a terminator string.

repetition: In MDL, a repeating sequence of elements to be found in the input text. Each
element of a repetition is always a group. Repetitions occur a the record level; tail repetitions
occur within a particular record.

reserved word: In MDL, a name defined by the language which cannot be used as an identifier
by the programmer.

scope: In MDL, the part of the program in which an identifier has a particular meaning assigned
by the programmer.

CMP SUM VER. 1.0/1.1
2/20/97

171

separator: In formatted text, a sequence of characters signaling the end of one field and the
beginning of another.

set: In the ADatP-3 and USMTF message standards, a particular type of record. The first field
contains the name of the set type.

string: A sequence of characters enclosed in a pair of single quotes (') or double quotes (").

Structured Query Language: The de facto standard data definition and manipulation language
used as a baseline by many database implementations.

tail group: In MDL, the elements of a tail repetition. The elements of a tail group are fields in
an input record.

tail repetition: In MDL, a repeating sequence of elements to be found at the end of a single
input record. See repetition.

terminator: In formatted text, a sequence of characters signaling the end of an input record.

United States Message Text Format: A DoD voice and formatted text message standard.

CMP SUM VER. 1.0/1.1
2/20/97

172

6.3 LIST OF DEFINITIONS

alternate initial sets: A choice of two or more sets, exactly one of which can be used as the first
set in an instance of a given USMTF segment.

Backus-Naur Form: A notation system frequently used to represent the syntax of programming
languages and other context-free grammars.

client: Any program which uses the parser to extract information from USMTF or OTH Gold
messages.

data element: Any complete USMTF/OTH Gold or subordinate USMTF/OTH Gold component
segment, set, or field that can be designated in JQL.

data element specifier: In JQL, the syntax used to reference a given USMTF/OTH Gold
segment, set, or field.

data item: The information contents of a USMTF/OTH Gold data element.
date-time group: A standardized, formatted representation of the date and time at which a

message was originally transmitted.

domain: see message domain.

field: In the MTF standard, a low-level data item containing formatted information within a set.

field format index An index into a Joint Pub. 60-40 table of
reference number: field formats that identifies the allowable structure of that MTF field.

field use designator: In the MTF standard, one of a set of codes assigned to an ffirn that
indicates the meaning of the data encoded in the field.

inline function: One of a limited number of function that may be applied to selected data
elements in JQL for the purposes of retrieving information
associated with or derived from the cited data rather than
the cited data itself.

Joint Message Analysis
Processing System (JMAPS):

An integrated MTF processing system developed by
MITRE; it will support the preparation, transmission, and
receipt of the complete catalog of MTF messages, as well
as automatic updates to changes in the standard, demand-
driven parsing and validation to data feed arbitrary user

CMP SUM VER. 1.0/1.1
2/20/97

173

applications, and constraint-based reasoning capabilities.

JMAPS Query Language: A data manipulation language used to access MTF data and to
direct partial message parsing and validation in JMAPS.

message base: A central repository of MTF messages definitions in an internal format that
represents the totality of messages processed by the parser.

message domain: In JQL, the subset of the message base that represents the particular MTF
from which data is retrieved.

message element: see data element.

message text format: In the MTF standard, the highest level data entity; it consists of a
predetermined sequence of sets and segments determined
uniquely by the identifying name of the message.

message type: Any instance of a MTF message having a given message name.

originator: The plain-language designator of the activity that was the point of origin of
a transmitted message.

parse: In MTF processing, to locate and identify the significant structural
components of a message.

placeholder: In a JQL shell, an ampersand character ('&') followed by an integer which
shows where substitution of retrieved MTF data into a copy
of a template will occur.

presentation number: In the sequence of possible sets making up a given MTF type, an
integer value that is theoretically assigned to each set to
illustrate its relative position in the message.

registration: The process of informing JMAPS of the information requirements of a new
client application.

scope: In a JQL shell, the domain within which the substitution of a given
collection of retrieved data elements into a text template
occurs.

CMP SUM VER. 1.0/1.1
2/20/97

174

segment: In the MTF standard, a predetermined sequence of related sets and possibly
other segments that are treated as a contiguous information
group.

set: In the MTF standard, a predetermined sequence of related fields together
with a name that indicates the relationship of the contained
fields.

shell: The combination of one or more JQL statements together with one or more
text templates into which MTF derived data will be
substituted.

standard: In the context of this paper, Pub. 60-40, the document that defines the
basic rules governing the structure and content of a MTF.

Structured Query Language: The de facto standard data definition and manipulation
language used as a baseline by many commercial databases.

superuser: In UNIX, the user account with the ability to access and modify any file or
resource. Also known as the root account.

template: In a JQL shell, text that contains placeholders for representing where
retrieved MTF data may be substituted.

United States Message Text
Format:

A DOD voice and formatted text message standard.

validation: The verification that the data contained in the structural components of a
given MTF obey the rules for content and use as stated in
Pub. 60-40.

wildcard: The asterisk symbol (*), used in JQL's domain resolution expressions to
denote the absence of a constraining value for some key
feature of messages of interest.

CMP SUM VER. 1.0/1.1
2/20/97

A - 1

APPENDIX A
INSTALLATION GUIDANCE

(NOTE: This is not necessary for DII COE use)

1. INTRODUCTION

The purpose of this appendix is to define hardware and software environmentals necessary to
install individual, or all of the components of CMP.

2. POSSIBLE CONFIGURATIONS

2.1 Layout of distinct CMP Configurations

The following table is a layout of distinct CMP configurations and the physical
segments needed to perform the functions.

Config Parser
(JMAP
S)

Msg
Gen
(JMPS)

Journali
ng

CMP
User
Int.

Discrimin
ator

Norm Other
COE/Da
ta Segs

1 JMAPS x x #,T
2 JMAPS/

JMPS/
x x x #,T

3 JMAPS/
JMPS/
Journal

x x x x #,*,$,T

4 JMAPS/
JMPS/CUI

x x x x x #,*,$,T

5 JMAPS/
JMPS/CUI/
NORM

x x x x x x #,*,$,T

6 JMPS x #,T
7 JMPS/

Journal
x x #,*,$,T

8 JMPS/CUI x x x x #,*,$,T
9 JMPS/CUI/

Norm
x x x x x #,*,$,T

10 JMPS/Norm x x #,T
11 JMPS/Norm x x x #,*,$,T

CMP SUM VER. 1.0/1.1
2/20/97

A - 2

/Journal
12 JMAPS/

Journal
x x x #,*,$,T

13 JMAPS/
Norm

x x x #,T

14 JMAPS/
Norm/
Journal

x x x x #,*,$,T

15 JMAPS/
Journal/CUI

x x x x #,*,$,T

Legend:

 x - Required
- COE Com Required
* - COE DCS Required
$ - COE DBMS Required
T - Message Tables Required
blank - Not required.

2.2 Installation Scenarios

The following is a description of the installation scenarios for each of the above
configurations.

Index Resources

(1) Disk Space: 31MB
 Shared Memory/Semaphores: See JMAPS Kernel Configurations

(2) Disk Space: 71MB
 Shared Memory/Semaphores: See JMAPS Kernel Configurations

(3) Disk Space: 72MB
DCE: Name Space (/.:/jnl_int_`hostname`, /.:/jnl_int_group)
Shared Memory/Semaphores: See JMAPS Kernel Configurations

(4) Disk Space: 80MB
DCE: Name Space (/.:/jnl_int_`hostname`, /.:/jnl_int_group)
Shared Memory/Semaphores: See JMAPS Kernel Configurations

CMP SUM VER. 1.0/1.1
2/20/97

A - 3

(5) Disk Space: 81MB
DCE: Name Space (/.:/jnl_int_`hostname`, /.:/jnl_int_group)
Shared Memory/Semaphores: See JMAPS Kernel Configurations

(6) Disk Space: 67MB

(7) Disk Space: 68MB
DCE: Name Space (/.:/jnl_int_`hostname`, /.:/jnl_int_group)

(8) Disk Space: 75MB
DCE: Name Space (/.:/jnl_int_`hostname`, /.:/jnl_int_group)

(9) Disk Space: 76 MB
DCE: Name Space (/.:/jnl_int_`hostname`, /.:/jnl_int_group)

(10) Disk Space: 68 MB
(11) Disk Space: 69 MB

DCE: Name Space (/.:/jnl_int_`hostname`, /.:/jnl_int_group)

(12) Disk Space: 32 MB
DCE: Name Space (/.:/jnl_int_`hostname`, /.:/jnl_int_group)

(13) Disk Space: 32MB
(14) Disk Space: 33MB

DCE: Name Space (/.:/jnl_int_`hostname`, /.:/jnl_int_group)

(15) Disk Space: 40MB
DCE: Name Space (/.:/jnl_int_`hostname`, /.:/jnl_int_group)

The following Kernel parameters are required for JMAPS and COE DBMS and COE DCS
services to function together. These parameters apply to all configurations using the parser
(JMAPS), or Journaling Server (which requires COE DCS and DBMS services).

JMAPS Kernel Configurations (/etc/system):
set shmsys:shminfo_shmmax=8388608
set semsys:seminfo_semmap=64

CMP SUM VER. 1.0/1.1
2/20/97

A - 4

set semsys:seminfo_semmni=4096
set semsys:seminfo_semmns=200
set semsys:seminfo_semmnu=4096
set semsys:seminfo_semume=64
set shmsys:shminfo_shmmin=1
set shmsys:shminfo_shmmni=100
set shmsys:shminfo_shmseg=10

2.3 COE run-time dependencies

The following details COE run-time dependency segments that should be installed
and running when before attempting to install the CMP

Index Segments

(1) Comm interface, Motif 1.2, X11R5
(2) Comm interface, Motif 1.2, X11R5
(3) Comm interface, Motif 1.2, X11R5, DCE
(4) Comm interface, Motif 1.2, X11R5, DCE
(5) Comm interface ,DCE, Motif 1.2, X11R5, DCE
(6) Comm interface, Motif 1.2, X11R5
(7) Comm interface ,Motif 1.2, X11R5, DCE
(8) Comm interface ,DCE, Motif 1.2, X11R5, DCE
(9) Comm interface ,DCE, Motif 1.2, X11R5, DCE
(10) Comm interface, Motif 1.2, X11R5
(11) Comm interface, DCE, Motif 1.2, X11R5

(12) Comm interface, DCE, Motif 1.2, X11R5, DBMS (COE DBMS)

(13) Comm interface, Motif 1.2, X11R5
(14) Comm interface, DCE, Motif 1.2, X11R5, DBMS (COE DBMS)
(15) Comm interface, DCE, Motif 1.2, X11R5, DBMS (COE DBMS)

3.0 Registration and Query

3.1 Registration of Client Applications

CMP SUM VER. 1.0/1.1
2/20/97

A - 5

Prior to using the CMP, the information required by each client application must be described to
the processor, by the user in a process called registration. Clients must specify the types of
messages in which they are interested, the fields to be extracted from messages of these types, and
the destination to which the extracted fields must be routed. This registration information may
either be given to the processor at startup time in a client configuration file, or interactively
through the user interface.

This section describes a hypothetical client application called ISUM, which collects various kinds
of intelligence data and summarizes them in a report for its users. The ISUM program is not a
part of the processor; in fact, it is not a real program at all. ISUM simply represents a typical
client program that requires information from a message.

To do its job, ISUM needs some of the information present in TACELINT messages. These
messages report time-critical operational electronic intelligence information. An abridged
description of the message format is in Table A-1. Specifically, ISUM is interested in reports of
surface ship emitters that have been precisely located. ISUM needs to now the signal ID,
detection time, location, and ship responsible for these signals. The parser must extract the fields
containing this information from incoming TACELINT messages and route the results to ISUM.
Also, because ISUM is sensitive to errors in its input data, the parser must validate the incoming
messages and inform ISUM if any errors are discovered. The sequence of sets in the message
format is described in Table 3-2.

Table A-1. An Abridged Description of the TACELINT Message

Occurrence Set ID Field Occurrence Set Format Name
C EXER /M/O// exercise information
C OPER /M/O/O/O operation identification data
M MSGID /M/M/O/O/O/O message identification
*O REF /M/M/M/M/O/*O// reference
C AMPN /M// amplification
C NARR /M// narrative information
C COLLINFO /C/C/C/C// collector information
[M SOI /M/M/M/M/M/C/C/C/C/C// ELINT operational information
[*C EMLOC /M/M/M/C/C/C/C// emitter location
[*C PRM /M/M/O/M/C/M/C/C/O// signal analysis information
[*O PLATID M/M/M/M/M/O/O/O// platform identity

The occurrence category "C" represents "conditional"; "M" is "mandatory"; "O" is "optional"; and
"*" is "repeatable". The "[" code indicates that the sets SOI, EMLOC, PRM, and PLATID may
be repeated as a segment for reporting multiple signals. All of the sets in the segment describe the
same emitter. Sets in different segments are logically independent.

CMP SUM VER. 1.0/1.1
2/20/97

A - 6

Descriptions of some of the fields in the message are given in Table A-2.

Table A-2. Partial Field Description

Set and Field # Field Description
SOI.1 target signal identifier - code that identifies the detected signal
SOI.2 detection time -- date-time group for time signal first detected
EMLOC.2 location data category -- code describing emitter location
EMLOC.3 location
PLATID.1 ship control number
PLATID.2 platform type -- ship, aircraft, submarine, etc.
PLATID.3 ship type, or submarine type, or aircraft model
PLATID.4 ship class name, or submarine class name, or aircraft name
PLATID.5 ship name

In this section we will take the role of an ISUM system developer arranging to register ISUM
with the parser. First, we must write a query that describes the fields we require and also specifies
our validation requirements. Second, we must write a routing table entry to execute the query on
new TACELINT messages and send the results to ISUM. In the following sections, we show
how to write the query and routing entry, and then show how to give these entries to the parser
using either the user interface or a client configuration file.

3.2 Writing the Query for ISUM.

Queries are written in Structured Query Language (SQL), which is a standard database query
language. Queries describe (a) the conditions that the contents of a message must satisfy in order
to be selected, and (b) the parts of a message which will be extracted and sent to an application.

A query is composed of several clauses. Here is a very brief description of the kinds of clauses
used in the following example and the meanings.

a. The SELECT clause describes the message fields to be extracted and sent to the
application. Specifying multiple fields asserts a logical relation between the selected
fields, which will be reflected in the output. (This will be illustrated by the example
appearing later in this section.)

b. The FROM clause describes the messages to be considered. Messages must be
specified by message type, and may be further defined by originator or by date-time
group.

c. The WHERE clause specifies a test that must be met by the message contents.
Message data that fails this test is not included in the query results.

CMP SUM VER. 1.0/1.1
2/20/97

A - 7

d. The FORMAT clause describes the output format of the selected message fields.
Most queries use FORMAT TABLE, which organizes the output in the form of a
relational table, suitable for importing into a database.

e. The VALIDATE clause describes the portions of the message contents to be
validated. The

 choices are to validate the entire message, or only the extracted fields, or nothing at
all. In order to write the query for ISUM, we must consult the definition of the
TACELINT message format. The first step is to specify the fields to be extracted
from each message. ISUM needs the signal ID, detection time, location, and
information about the ship emitting the signal. Studying the standard, we find that we
need the following five fields:

(1) SOI.1 target signal identifier
(2) SOI.2 signal detection time
(3) EMLOC.3 signal location
(4) PLATID.3 ship type
(5) PLATID.5 name of ship

All five fields will appear in the SELECT clause. These fields contain everything that ISUM
needs. However, we may have to add fields after we write the WHERE clause; see below.

Because we are not writing an interactive query, we can omit the FROM clause. The Message
Parser will apply this query to each TACELINT message individually, as it arrives. There is no
need to tell the parser which messages to consider here.

Next, we must write the WHERE clause in order to restrict the signals that are reported to ISUM.
 We are only interested in precisely-located surface ship emitters. Consulting the standard again,
we discover that the value "F" in the EMLOC.2 field (emitter location data category) tells us
whether the signal has been precisely located. The value "SHIP" in the PLATID.2 field (platform
type detected) tells us that the signal emitter is a surface ship. Putting these two together, we can
write the following WHERE clause:

WHERE EMLOC.2="F" AND PLATID.2="SHIP"
It is a rule that every field mentioned in the WHERE clause must be included in the SELECT
clause. We must add the above two fields to the five fields required by ISUM.

Next, we will write "FORMAT TABLE" to organize the extracted information into a relational
table. ISUM will import this table into its internal database.

Finally, we write "VALIDATE ALL" to cause the parser to report any validation error in the
incoming message. We want ISUM to reject information from an invalid TACELINT message,
even if the specific fields extracted are valid.

CMP SUM VER. 1.0/1.1
2/20/97

A - 8

We have to give our query a name. We will call it "isum-01." The complete text of the query
appears as follows:

SELECT SOI.1,SOI.2,EMLOC.3,

PLATID.3,PLATID.5,
EMLOC.2,PLATID.2

WHERE EMLOC.2="F" AND PLATID.2="SHIP"
FORMAT TABLE or VALIDATE ALL;

When the isum-01 query is executed on a TACELINT message, it will extract the information
required by the ISUM program. For example, a sample TACELINT message is displayed in
Figure A-1. This message contains four segments describing four separate emitters.

When we execute the isum-01 query on this message, we get the five output rows displayed
below:

"21400","010951Z","LS:435244N0751820W","DD","CUSHING","F","SHIP"
"21400","010951Z","LS:435244N0751820W","DD","BURKE","F","SHIP"
"21400","010951Z","LS:435244N0751822W","DD","CUSHING","F","SHIP"
"21400","010951Z","LS:435244N0751822W","DD","BURKE","F","SHIP"
"21401","010951Z","LS:435250N0751850W","DD","LEFTWICH","F",SHIP"

OPER/GRAVE/DIGGER//
MSGID/TACELINT/RHDIAAA/0401024/APR//
COLLINFO/BH//

SOI/21392/010945Z/0109487/EHIZZ/LOUDMOUTH/DQ// segment
EMLOC/01/P/LS: 43352400N0751826W/-/011.0T/22KM/8KM// #1

PRM/01/00895.5MHZ/D/PRI:001085.897/S/PD:0.540/STDY/-//
PRM/01/-/-/PRI:000521.162/S/PD:0.550//
PLATID/11011/SHIP/DD/SPRUANCE/CUSHING/985/US
SOI/21395/010942Z/0100947Z/EHIZZ/HIGHBLOW/DQ//

EMLOC/01/F/LS:4335241N0751830W// segment
PLATID/-/AIR/F15/-/-// #2
SOI/21400/010951Z/010953Z/EHIZZ/LOUDMOUTH/DQ//

EMLOC/01/F/LS:435244N0751820W// segment
EMLOC/02/F/LS:435244N0751822N// #3

PLATID/11011/SHIP/DD/SPRUANCE/CUSHING/985/US//
PLATID/12200/SHIP/DD/BURKE/BURKE/022/US//

CMP SUM VER. 1.0/1.1
2/20/97

A - 9

SOI/21401/010951Z/010951Z/EHIZZ/LOUDMOUTH/DQ// segment
EMLOC/01/F/LS:435250N0751850W// #4
PLATID/11012/SHIP/DD/SPRUANCE/LEFTWICH/984/US//

Figure A-1. A Sample TACELINT Message

Note that our query extracts nothing from the first two segments. The first segment is skipped
because it reports an estimated position (EMLOC.2="P"). The second segment is skipped
because it describes an aircraft emitter (PLATID.2="AIR").

Note that four output rows are produced for the signal reported in the third segment. The third
segment gives two locations and two identifications for the signal. Recall that the SELECT
clause in our query asserts that the selected values are related. The CMP produces all four
possible combinations of values for this relation.

Note that the CMP does not produce all possible combinations of values in separate segments.
The values extracted from separate segments describe separate emitters; they are not related, so
the parser does not combine them. This is an example of the general rule that it does not produce
combinations of values from unrelated segments (see Section 3.6.1.2.2).

3.2.1 Writing the Routing Table Entry for ISUM.

Creating the routing table entry is the second part of registering an application with the CMP. A
routing table entry tells the processor that every time a particular type of message arrives, it
should execute a query on the message and send the output to a client application.

To write the routing table entry for ISUM, we need to know five things:

a. The type of message to be processed. For ISUM, the message type is TACELINT.
b. Whether we want the incoming messages to be saved in the message repository. This

is necessary if we later want to correct and resubmit invalid messages. For ISUM, we
want to be able to do this.

c. The name of the query to execute on these messages. For ISUM, the query name is
"isum-01."

d. The name of the client application program to receive the query output. When not
using DCE this should usually be an absolute pathname. The name of the ISUM
executable is "/usr/isum/isum."

e. The host name of the machine where the client program will be executed. ISUM
executes on the same machine as the message processor, so we use "localhost" for
this.

CMP SUM VER. 1.0/1.1
2/20/97

A - 10

There are two different ways we can enter this information into the routing table; through the user
interface, or through a client configuration file. We will see both methods in the following
sections.

3.3 Registering ISUM with the User Interface.

As an ISUM developer, we will want to test the configuration to ensure that the correct
information is extracted and routed to ISUM. By using the UI, we can quickly enter, test, and
modify configuration information without having to restart the processor each time we want to
make and test a change. In this section we show how an ISUM developer would create and test
the ISUM registration. We will deliberately make a mistake, and show how to detect and correct
it.

(The user interface is based on the Motif user environment. Readers not familiar with this
environment might wish to turn to Section 3.7.2, which contains an overview of the environment
and the terminology used to describe its use.)

We assume that the message processor is running and that we have invoked the user interface.
The first step in registering ISUM is to create the new query. To do this using the parser UI, we
follow these five steps:

Step 1 Using the menu bar, we choose Windows Queries, then Commands New.
This displays a Queries(NEW) window.

Step 2 Enter the name of the query into the Query Name input field. We type isum-
01.

Step 3 Enter the text of the query into the Query input field. We should type the
text of the query appearing on page. Instead, we mistakenly leave out the
PLATID.3 field in the SELECT clause.

Step 4 Press the Validate button to check for syntax errors in the query text.

Step 5 Press the OK button once all errors have been corrected.

The second step in registering ISUM is to create the routing table entry. To do this, we choose
Windows Routing. This creates the Routing window.

There is no entry for TACELINT messages in the Routing window, so we must create one. We
do this using the following four steps:

Step 1 Choose Commands New. This creates a Routing(NEW) window.

CMP SUM VER. 1.0/1.1
2/20/97

A - 11

Step 2 Enter the name of the message type into the Message ID input field. We
type "TACELINT".

Step 3 Turn on the Save Message check box. This tells the processor to save
incoming TACELINT messages in the message journal.

Step 4 Press the OK button.

After we press the OK button, the Routing(NEW) window vanishes, and the new entry for
TACELINT messages appears in the Routing window.

We have now added an entry for TACELINT messages into the routing table. Next, we must add
ISUM to the list of clients requiring information from these messages. To do this, we follow
these seven steps:

Step 1 Select the TACELINT list item in the Routing window (by clicking on it).

Step 2 Press the Applications button. This creates an Applications window, which
displays the application list for TACELINT messages.

Step 3 Choose Commands New. This creates an Applications (NEW) window.

Step 4 Enter the name of the client application into the Application input field. This
would ordinarily be the name of the ISUM executable file, "/usr/isum/isum."
 However, because we are testing, we enter "cat>isum.in" instead. This
causes the query output to be saved in the file named "isum.in" in the current
directory.

Step 5 Enter the name of the machine that runs the application into the Host input
field. We type "localhost."

Step 6 Enter the query used to filter TACELINT messages routed to this application
in the Query input field. We type "isum-01."

Step 7 Press the OK button.

When we press the OK button, the Applications(NEW) window vanishes, and the new application
entry appears in the Applications window. To make this window vanish, press Close.

That is the final step in our registration of ISUM. Next, we want to test the registration by
sending a TACELINT message and examining the output that would be routed to ISUM.
Assume that the sample TACELINT message shown in Figure 3-4 is contained in a file named
"tac1.msg" in the current directory. We can give this message to the processor with the command

CMP SUM VER. 1.0/1.1
2/20/97

A - 12

mtf2parser tac1.msg. It will run the isum-01 query on the message and send the result to the cat
command, which creates the isum.in file. The contents of this file are shown in Figure A-2.

CMP SUM VER. 1.0/1.1
2/20/97

A - 13

.MSGID TACELINT

.FROM RHDIAAA header

.TO DHDIAZZ/SYJ lines
.DTG 011200z APR 93
.ERRORS 0
"21400","010951Z","LS:435244N0751820W","CUSHING","F","SHIP"

"21400","010951Z","LS:435244N0751820W","BURKE","F","SHIP" extracted
"21400","010951Z","LS:435244N0751820W","CUSHING","F","SHIP" data

"21400","010951Z","LS:435244N0751820W","BURKE","F","SHIP"
"21401","010951Z","LS:435250N0751850W","LEFTWICH","F","SHIP"
END trailer

Figure A-2. Example of Output Sent to a Client Application

Notice the additional lines before and after the query output. These lines are part of the output
protocol, which is fully described in Section 3.8.2. The lines beginning with a period form the
output wrapper, which contains information pertaining to the addressing of the message and not
its contents. The other lines are the output of the isum-01 query. When we examine this output,
we notice that the ship types are missing. We will have to correct the isum-01 query. To do this,
we follow these steps:

Step 1 Choose Windows Queries. This creates a Queries window.
Step 2 Select the isum-01 query.
Step 3 Choose Commands Edit. This creates a Queries(Edit) window.
Step 4 Insert "PLATID.3" into the SELECT clause in the Query input field.
Step 5 Press VALIDATE to check for syntax errors.
Step 6 Press OK when all errors have been corrected.
Step 7 Press Close to make the Queries window vanish.

To test our correction, we will want to try running the isum-01 query again. We can make the
parser reprocess the sample TACELINT message with the following steps:

Step 1 Choose Windows Message Repository. This creates a Message Repository
window displaying all of the incoming messages saved.

Step 2 Select the sample TACELINT message. (If there is more than one message,
match the message ID, date/time group, and originator to the output header
lines.)

Step 3 Press the Submit button. This causes the processor to reprocess the selected
message as if it had just arrived. The processor will overwrite the old
isum.in file with the new results.

CMP SUM VER. 1.0/1.1
2/20/97

A - 14

This time the message processor produces the correct output, as shown below:

CMP SUM VER. 1.0/1.1
2/20/97

A - 15

.MSGID TACELINT

.FROM RHDIAAA

.TO DHDIAZZ/SYJ

.DTG 011200Z APR 93

.ERRORS 0
"21400","010951Z","LS:435244N0751820W","DD","CUSHING","F","SHIP"
"21400","010951Z","LS:435244N0751820W","DD","BURKE","F","SHIP"
"21400","010951Z","LS:435244N0751822W","DD","CUSHING","F","SHIP"
"21400","010951Z","LS:435244N0751822W","DD","BURKE","F","SHIP"
"21401","010951Z","LS:435250N0751850W","DD","LEFTWICH","F","SHIP"
.END

The last step is to correct the routing so that the query output actually goes to ISUM instead of
being saved in a file. To do this, we follow these steps:

Step 1 Choose Windows Routing

Step 2 Select TACELINT messages, then press Applications.

Step 3 Select the "cat>isum.in" line, then choose Commands Delete.

Step 4 Press the OK button. This removes the routing entry.

Step 5 Now choose Commands New and make a new routing entry. We follow the
same steps as on page, except this time we enter "/usr/isum/isum" into the
Application input field.

The registration of ISUM has been tested and completed. As a final test, we can return to the
Message Repository window and submit the sample message one more time. This time, the query
output is routed to the ISUM program. When ISUM prints its reports, the signals reported in the
sample message will be part of its output.

3.4 Registering ISUM with a Client Configuration File.

Client registration with the user interface is good for development and testing, but it is not a
practical way to register client systems in the operational environment. We can hardly expect
operators in the field to go through the process every time they start the processor.

Client configuration files are the practical way to register clients in the operational world. The
client configuration file contains all of the queries and routing table entries necessary to register a

CMP SUM VER. 1.0/1.1
2/20/97

A - 16

client with the processor. Developers of a client system write the configuration file, which is then
distributed with their system software. In the field, operators simply copy this file into the parser
configuration directory. When the processor coldstarts, it reads configuration files from all of the
systems it serves; afterwards, it has all the information it needs to extract information from
incoming messages and route it to the client programs.

A client configuration file is composed of a series of entries. Here is a very brief description of
the kinds of entries. A complete description of the syntax of configuration files is presented in
Section 3.8.1.

a. A query entry defines and names a single query.
b. A routing entry defines a single routing table entry.
c. A message entry specifies whether to save messages of a particular type.

In order to register ISUM, we must create a client configurationfile containing the following three
entries:

query isum-01=
SELECT SOI.1,SOI.2,EMLOC.3,
PLATID.3,PLATID.5,EMLOC.2,PLATID.2
WHERE EMLOC.2="F" AND PLATID.2="SHIP"
FORMAT TABLE
VALIDATE ALL;

route tacelint query isum-01 host localhost
cmd/usr/isum/isum;

set tacelint save=yes;

We name this file "isum.ccf" and place it in the configuration directory. During the next coldstart,
it will process this file. This will create the isum-01 query, arrange to run this query on
TACELINT messages, route the output to ISUM, and cause the processor to save TACELINT
messages. That is everything required to register ISUM.

3.5 Routing Several Message Types to a Single Application.

It is possible that an application might want information from more than one message type. For
example, ISUM might want to extract fields from ELINT Requirement Tasking Messages
(ERTM) as well as from TACELINT messages. To arrange this, we repeat the registration
process: we first write a new query to extract fields from ERTM messages, then route ERTM

CMP SUM VER. 1.0/1.1
2/20/97

A - 17

messages through this new query to ISUM. We do not have to write a separate client
configuration file to do this; instead, we can simply insert the new information into the existing
isum.ccf file. For example, we might append the following lines to isum.ccf:

query isum-02=
SELECT AREAREQ.1,AREAREQ.2,TRCPLOT.1,TRCPLOT.2
FORMAT TABLE
VALIDATE ALL;

route ertm query isum-02 host localhost
cmd/usr/isum/isum;

Afterwards, ISUM will receive selected fields from both TACELINT and ERTM messages.

3.6 Routing a Single Message Type to Several Applications.

Suppose that an application named SIGNALS on our system also needs information from
incoming TACELINT messages. We would register it in the same way: first write a query, then
route TACELINT messages to it. When a new TACELINT message arrives, the processor will
run the isum-01 query and route the output to ISUM, and then run the query for SIGNALS and
route the output to it (or possibly the other way around; the order of evaluation cannot be
specified).

It is wise to write a separate client configuration file for each separate application. Some sites
might run ISUM but not SIGNALS; others might run SIGNALS but not ISUM. With separate
configuration files, each site just puts the configuration files for the applications it runs into the
configuration directory. For the same reason, it is also wise to make the individual configuration
files completely independent of one another. Although it is possible to define a query in one file
and refer to it in another, this should be avoided.

4.0 INSTALLATION, CONFIGURATION, AND OPERATION

This section is a guide for the system administrator at your site. It describes how to install the
CMP from the distribution tape, how to customize it for your system, and how to operate the
message processor and user interface programs. We assume that the system administrator is
familiar with the typical details of UNIX system administration: creating new accounts, operating
the tape drive, etc. If not, the Sun System & Network Manager's Guide is a good introduction.

CMP SUM VER. 1.0/1.1
2/20/97

A - 18

4.1 Installation (NOTE: Information located in DII COE “SegDescrip” files)
To facilitate ease of installation, the Army has created “script files” which performs installation
and creation of the required paths. Use of the script files reduces the need to define step by step
installation procedures.

Once the tar format tape has been extracted onto the system, a number of directories are created
(for the binary distribution). These include bin, lib, src, man, and spool. Only bin and lib are
important in the actual CMP execution. The directories are described as follows:

NOTE:In this section there are files using the term "jmps" interchangeably with the term CMP.
This will be changed in later versions of the CMP software release.

bin: Contains the CMP executable.

lib: Contains the jmps.ini initialization parameter file example, the jmpsrc preference file
example (copy to HOME as .jmpsrc), and the selected or available messages along with
bitmaps for the program icon display.

src: Contains the jogs compiler for those who need to create binary (.i) message files for
CMP.

man: A manual directory currently empty

spool: Output directory currently empty.

4.1.1 CMP Installation (NOTE: Not necessary for DII COE)

Log in as the defined user account and extract the CMP distribution by typing: $ tar
xvf /dev/rmt/0m (or your DAT device name.)

4.1.1.1 Journal Installation

1. Log in as any user. cd ~JOURNALING
2. Execute the INSTALLJOURNAL script file.
3. This script will configure the paths to the primary and secondary storage
 location for messages.
4. cd to the bin directory under JOURNALING and type either
 jnl_server_trarc_fb master (for the file based implementation) or
 jnl_server_trarc_db master (for the database implementation.)
5. You should see the following response:

CMP SUM VER. 1.0/1.1
2/20/97

A - 19

 Initializing msg.db, data.db, memo.db, destInfo.db, hdrInfo.db ..DONE!
 ---- send log thread created -----------

 Listening for Requests ...

4.1.1.2 DISCRIMINATOR Installation

1. Login as any user. cd ~DISC
2. Execute the INSTALLDISC script file.
3. This script will configure the paths in the config.dat file.
4. cd to the bin directory under DISC and type either
 disc_trarc_fb (for the file based implementation) or
 disc_trarc_db (for the database implementation.)

4.1.1.3 JMPS Installation

1. Login as any user. cd ~JMPS
2. Execute the ./lib/JMPinst script file.
3. This script will:
 -Configure the jmps.ini file.
 -Configure all the executables using confadm.
4. cd to the bin directory under JMPS and verify that the path to the jmps.ini
 file is correct by doing:
 confadm -q jmps
5. If the path is not correct, set the location of the jmps.ini file by doing:
 confadm -s <your path to the file>/JMPS/lib/jmps.ini jmps
6. Set the DISPLAY environment variable to the current display if it is not
 already set by doing:
 $ export DISPLAY = netmon:0.0 (example for Korn shell)
 $ setenv DISPLAY netmon:0.0 (example for C shell)
7. To run JMPS, cd to the bin directory under JMPS and type:
 $ jmps tmp
 where “tmp” is any file name which will contain the edited message.
8. If “tmp” is a new file, the user will be prompted with a message type to
 edit based on the name.db file. If the message has already been created

CMP SUM VER. 1.0/1.1
2/20/97

A - 20

 and is to edited, the main jmps input screen will appear.

4.1.1.4 JMAPS Installation

1. Login as root. cd ~JMAPS
2. Execute the ./installation script file. This should configure JMAPS to be
 run from the jmapsadm account. Answer the prompts with the correct
 name of the account and where the JMAPS executables have been
 restored.
3. This script will also:
 -Create the .Mapsconfig file under JMAPS.
 -Configure the binaries using the confdir prog.
 -Install the JMAPS Xdefaults file in the app-defaults directory.
4. To test, coldstart JMAPS by typing:
 $ jmaps coldstart ui

4.1.1.5 CUI Installation

1. Login any user. cd ~CUI
2. Execute the INSTALLCUI script file.
3. This script will ensure that a soft link exists to your current location of
 jmps (assuming that JMPS has been installed at the same tree level.)
4. cd to the bin directory under CUI and type either
 cui_trarc_fb (for the file based implementation) or
 cui_trarc_db (for the database implementation.)
5. The CUI window will appear.
Note: Requires Journaling Server be installed prior to installation of this module.

4.2 Choose Names and Locations.

You must choose names for the system administrator account and the CMP group. The standard
names for these are:

cmpadm the system administrator user name

cmp the CMP group name

CMP SUM VER. 1.0/1.1
2/20/97

A - 21

These accounts are used by the processor for authorization and authentication purposes. The
cmpadm user is the only user permitted to start and stop the message processor. Other users
may run the user interface if they are members of the CMP group.

You must also choose a location for the home directory. This will be the home directory of the
system administrator account, and will contain all of the executable and data files. The standard
location is /usr/parser.

The file system containing the home directory must have at least 20 megabytes of free space for
the executable and data files. In addition, more storage will be required in this file system during
execution: as messages arrive, they are saved in the message journal; query reports are generated;
and data is stored in the system logs. You should treat the above space requirements as an
absolute minimum and allocate as much additional space as possible.

It is recommended that you use the standard names and locations, but you can choose others if
necessary. If, for example, you decided to use /usr as the home directory, then for the remainder
of this section you would have to replace every occurrence of usr/parser with /usr, /usr
parser/bin with /usr/new/bin, etc.

4.2.1 Create User and Group Accounts.

You can create the CMP group account by making an entry in the /etc/group file. You may
choose any group-ID number as long as it is not already used by another group.

You create the parseradm user account by making an entry in the /etc/passwd file. Make sure
that this user is a member of the processor group. Set the user's home directory to /usr/local/
parser. (Create this directory if it does not already exist.) We recommend that you use /bin/csh
as the login shell for this user.

(Complete instructions for adding a new user account are supplied in Chapter 6 of the System &
Network Manager's Guide volume of the SunOS documentation).

4.3 Configuration

The parser keeps its site configuration information in a plain-text file called .MAPSconfig in the
administrator's home directory (/usr/local/CMP). Almost all of this information is automatically
set by the installation process. However, there are eight parser configuration parameters which
may need to be adjusted by the parser administrator. These parameters are as follows:

a. ATT.confdir: This is the name of the directory containing the client configuration
files (see Section 3.8.1). On startup, the parser processes all of the client
configuration files found here. The default value is /usr/local/parser/config.

CMP SUM VER. 1.0/1.1
2/20/97

A - 22

b. MIO.inputPort: This is the tty port set up for use by the processor. If you are
sending messages to the processor over a serial line, then you may need to change this
parameter. The default value is ttya.

c. MIO.printEnable: This tells the processor to print incoming messages as they are
received from the serial communications port. A value of 1 (one) enables printing, and
0 (zero) disables printing. The default value is 0.

d. MIO.printCmd: This is the command used to print ordinary text received from the
standard input. The print command must be enclosed in double quotes if it includes
any spaces. The default value is lpr.

e. CPP.maxSectionWait: This is the value, in hours, that the processor will wait for
missing message sections to arrive. The timer starts running when the first message
section is received. When the timer expires, the processor will put the incomplete
message in the incomplete MsgDir. There is a separate timer for each message. The
default value is 24.

f. SHMALLOCATOR.size: This is the number of bytes of shared memory that the
processor will use. The default value is 1572864, which is approximately 1.5
megabytes of shared memory. The remaining shared memory in the system is reserved
for other processes. You may increase this value to give the processor more shared
memory. If you do this, you may also have to reconfigure your kernel to change the
maximum shared memory size. (See Section 3.9.1.1).

g. IPCS.fieldsOnDisk: This switch controls how the processor will transfer a message
between its internal components. If the value is 0, it transfers messages using shared
memory. This is faster, but may require more shared memory than is available. If the
value is 1, the processor transfers messages as a disk file. This is slower but requires
much less shared memory. The default value is 1.

h. STANDARD: This variable controls which message standards a particular process
will use. The first character in this variable corresponds to the use of the USMTF
standard and the second character corresponds to the use of the OTH Gold standard.
The use of a standard is represented by '1' while omission of a standard is represented
by '0'.

The configuration parameters in the .MAPSconfig file may be changed using any text editor.
Changes will take effect the next time the processor is started.

All of the processor programs know the location of the .MAPSconfig file because it is build into
them as a constant string. This means that if the .MAPSconfig file is ever moved, the executable
files must be updated with the new location. This could happen if, for example, the entire
processor tree must be moved from one file system to another.

CMP SUM VER. 1.0/1.1
2/20/97

A - 23

Suppose, for example, that we have just moved the parser directory tree to /export/parser.
Then, to update the executables, we must execute the following commands:

cd/export/parser
bin/confdir-s/export/parser bin/jmaps

This will update all of the system and demonstration programs. There will be several "progname
is not a configurable executable file" warning messages, which should be ignored.

4.4 Operation

In general, only the administrator can directly control the message processor. Other users can
only run the user interface program. The commands associated with controlling the parser
message processor are as follows:

coldstart: run the message processor for the first time
snapshot: save the internal state of the message processor
shutdown: stop the message protocol
warmstart: restart the message processor from a previously- saved state
killprocessor: terminate the message processor without saving the

current state.

4.4.1 Initializing the Processor.

The coldstart command is used when the CMP has never been run on your computer before (i.e.,
the first time it is started). It initializes the system and creates internal data structures necessary
for proper operation. Afterwards, the processor will read incoming messages, but it will not
perform any message processing until it is told about its client applications.

By default, the processor will not attempt to read messages from a serial communication line. If
you want it to listen to the serial communications line, use the command coldstartcomm instead.

When you run coldstart you create an "empty" processor, with no messages received and no
queries or routing information entered. The results of previous operations will be lost. If you
wish to resume a previous execution instead of starting a new processor "from scratch," you must
use the warmstart command instead.

4.4.2 Saving the System State.

The snapshot command records the internal state of the message processor. This state
information is complete in that it includes the message journal, query reports, the error log, a
description of the processor client applications, and the message information these clients require.

CMP SUM VER. 1.0/1.1
2/20/97

A - 24

The state information is kept in the storage directory in a file that is always named data. This
file is overwritten by each snapshot or shutdown operation. A single backup copy of the data
file is always saved before creating a new version. This file is named dataBack.

4.4.3 Shutting Down the Processor.

The shutdown command is performed whenever it is necessary to turn off the processes. A
shutdown performs a snapshot before terminating the processes. This allows the administrator to
warmstart at a later date, and the system will pick up where it left off.

When it is not running, new messages that arrive at the communication port will not be read.
They will be lost.

4.4.4 Restarting the Processor.

The warmstart command starts the processor, recovering the system state from the data file
created by a previous snapshot or shutdown.

By default, it will not attempt to read messages from a serial communication line. If you want it
to listen to the serial communications line, use the command warmstartcomm instead.

4.4.5 Killing Processes.

The kill command terminates the message processor and all user interface processes running on
the local machine and removes all shared memory segments and semaphores that belong to the
user. This command does not save the current state.

5.0 Normalization Installation and Initialization.

The first step in using the normalization software is to customize the datafiles for use with the
host application software. Please refer to the paragraph titled "Customizing the Normalization
Datafiles" for detailed information on this process.

Next, the user must modify the "INSTALL_DIR" variable in the tem_env file located in the
installation directory "environment" subdirectory. It should be changed to reflect the directory
into which the Normalization software was installed. After modifying the tem_env file from
within the C-Shell, the user should source the tem_env file as follows: "source tem_env". There
should be no error messages associated with executing the source command.

To use the normalization function, the calling application must first invoke the initialize() function.
 Its calling sequence is "int initialize();". It returns SUCCESS on successful initialization and
returns FAILURE on unsuccessful initialization. SUCCESS and FAILURE are defined in the

CMP SUM VER. 1.0/1.1
2/20/97

A - 25

"normaliz.h" header file found in the install directory "include" subdirectory. The initialize
function reads in the lookup tables found in the install directory "datafiles" subdirectory. It should
be called only once at application start-up.

5.1 NORMALIZATION Installation

1. Login as any user. cd ~NORMALIZATION
2. Execute the INSTALLNORM script file.
3. This script file will configure all necessary normalization environment
 variables.
4. cd to the bin directory under NORMALIZATION and type
 $set_platform.

5.2 Termination.

The Normalization software is a callable library function. It is not an independent process. Use
of the Normalization software places no special termination constraints on the calling application.

5.3 Restart.

Upon restarting of the calling application, the initialize() function needs to be reinvoked.

5.4 Outputs.

The outputs of the Normalize function are the returned error code (SUCCESS or FAILURE),
indicating successful normalization or unsuccessful normalization) and the output variable
containing the converted data. The converted data will always be in character string format. The
character string format is appropriate since most calling applications will be databasing the
information (in which case a character string is appropriate for the insert SQL statement) or
putting the data into an outbound message. If however, the calling application requires integer
and float type values, it is possible to convert the character string output to the desired format via
"sscanf()" or "atoi()", which are part of the standard "C" library.

5.5 Error Messages

The following is a listing of the error messages output by the Normalization software, the
associated meaning of the message, and the action to be taken when each message appears;

Error Message: "initialization() must be called prior to invoking normalization function"

CMP SUM VER. 1.0/1.1
2/20/97

A - 26

Meaning: The initialization function has not been invoked yet.
Action: Add a call to the initialization function as described in paragraph 5.2.3.1 above.

Error Message: "conversion failed"
Meaning: The Normalization software was unable to convert the specified input.
Action: Examine input parameter and all other parameters to verify that a corresponding match
exists in the appropriate datafile. Refer to the Appendix titled "Customization of the Datafiles"
for information on the datafiles and their usage.

Error Message: "Please set environment variable WORKING_DIR =location of datafiles"

Meaning: The Normalization software is looking for the location of the datafiles during
initialization.

Action: Verify that the tem_env file has been modified correctly and that the invoking shell has
sourced the tem_env files.

Error Message: "counting data files failed"
Meaning: The Normalization software attempts to count the number of datafiles in order to
allocate memory for the data tables. This message indicates that the software is unable to read the
datafiles.

Action: There could be two possible causes for this error message. One, check the directory and
file permissions of the location of the datafiles. The user id assumed by the calling application
must have read permission on the datafiles and execute permission on the directory containing the
datafiles. Second, the environment variable WORKING_DIR should be set to the location of the
datafiles directory. Check the tem_env file to verify that it is set correctly.

Error Message: "opening data file failed"
Meaning: The Normalization software is unable to open one or more of the datafiles.
Action: Check the directory and file permissions of the location of the datafiles. The user id
assumed by the calling application must have read permission on the datafiles and execute
permission on the directory containing the datafiles.

Error Message: "load row failed"
Meaning: The Normalization software was unable to load the data properly from the datafiles.

Action: Verify that the datafiles are in the format specified in the Appendix titled "Customization
of the Datafiles".

Error Message: "error in cur_bfa entry: datafile file_number, row # entry_number"

CMP SUM VER. 1.0/1.1
2/20/97

A - 27

Meaning: The Normalization software was unable to load the data properly from the datafiles.

Action: Verify that the datafiles are in the format specified in the paragraph titled "Customization
of the Datafiles." In particular, check the cur_bfa column (column 1) and the row number
specified in the error message. The row numbers start with valid data rows and do not include
comment lines.

Error Message: "error in other bfa entry: datafile file_number, row # entry_number"

Meaning: The Normalization software was unable to properly load the data from the datafiles.

Action: Verify that the datafiles are in the format specified in the paragraph titled "Customization
of the Datafiles." In particular, check the other_bfa column (column 2) and the row number
specified in the error message. The row numbers start with valid data rows and do not include
comment lines.

Error Message: "error in in_or_out entry: datafile file_number, row # entry_number"

Meaning: The Normalization software was unable to load the data properly from the datafiles.

Action: Verify that the datafiles are in the format specified in the paragraph titled "Customization
of the Datafiles." In particular, check the in_or_out column (column 3) and the row number
specified in the error message. The row numbers start with valid data rows and do not include
comment lines.

Error Message: "error in rpc_or_msg entry: datafile file_number, row # entry_number"

Meaning: The Normalization software was unable to load the data properly from the datafiles

Action: Verify that the datafiles are in the format specified in the paragraph titled "Customization
of the Datafiles." In particular, check the rpc_or_msg column (column 4) and the row number
specified in the error message. The row numbers start with valid data rows and do not include
comment lines.

Error Message: "error in msg_kind entry: datafile file_number, row # entry_number"

Meaning: The Normalization software was unable to load the data properly from the datafiles.

Action: Verify that the datafiles are in the format specified in the paragraph titled "Customization
of the Datafiles." In particular, check the msg_kind column (column 5) and the row number
specified in the error message. The row numbers start with valid data rows and do not include
comment lines.

Error Message: "couldn't find match"
Meaning: The Normalization server was unable to find a matching output string for the given
input string.

CMP SUM VER. 1.0/1.1
2/20/97

A - 28

Action: Examine the input parameter and all other parameters to verify that a corresponding
match exists in the appropriate datafile. Refer to the paragraph titled "Customization of the
Datafiles" for information on the datafiles and their usage.

Error Message: "geometry lookup failed"
Meaning: The Normalization server was unable to find a matching output geometry type for the
given parameters. Note that the only valid geometry types are MGRS, LAT_LONG, and
EAST_NORTH.

Action: Examine all parameters except the input and output parameters, and verify that a
corresponding match exists in the appropriate datafile. Refer to the paragraph titled
"Customization of the Datafiles" for information on the datafiles and their usage.

Error Message: "non supported geometry type"
Meaning: The geometry types contained in the datafile are not supported types. Note that the
only valid geometry types are MGRS, LAT_LONG, and EAST_NORTH.

Action: Refer to the paragraph titled "Customization of the Datafiles" for information on the
datafiles and their usage.

Error Message: "time lookup failed"
Meaning: The Normalization server was unable to find a matching output time type for the given
parameters. Note that the only valid time types are DTG and SECS.

Action: Examine all parameters except the input and output parameters, and verify that a
corresponding match exists in the appropriate datafile. Refer to the paragraph titled
"Customization of the Datafiles" for information on the datafiles and their usage.

Error Message: "non supported time type"
Meaning: The time types contained in the datafile are not supported types. Note that the only
valid time types are DTG and SECS.

Action: Refer to the paragraph titled "Customization of the Datafiles" for information on the
datafiles and their usage.

Error Message: "conversion of quantity for <%s> failed"
Meaning: The Normalization software was unable to convert the input quantity.
Action: Examine input string to verify that its data is valid.

Error Message: "no data files found in WORKING_DIR"
Meaning: The Normalization software was unable to locate the datafiles.

CMP SUM VER. 1.0/1.1
2/20/97

A - 29

Action: Verify that the tem_env file has been modified correctly and that the invoking shell has
sourced the tem_env files.

5.6 Customization of the Datafiles

The Normalization software reads input from datafiles in the "WORKING_DIR" directory. The
datafiles are located in the install directory subdirectory "datafiles." The following data files are
customarily used by the Normalization software:

datafile0 : datafile for normalization of coordinates
datafile1 : datafile for normalization of time conversions
datafile2 : datafile for normalization of primary option
datafile3 : datafile for normalization of resource class
datafile4 : datafile for normalization of units
datafile5 : datafile for normalization of geometries
datafile6 : datafile for normalization of special skills
datafile7 : datafile for normalization of quantities

All conversions are done through table lookup except the coordinate conversions, time
conversions, and quantity conversions.

These data files need to be modified to suit the specific requirements of the calling application.
They may be modified using any ASCII text editor. It is not necessary to recompile the code after
modification of the data files; however, the calling application must call the initialize function prior
to using the normalization function. The initialize function reads in the values from the data files
into internal lookup tables.

Additional data files may be added for conversions not covered by these data files. Simply create
another data file in the same directory as the previously listed data files. The new data files should
be numbered starting at "datafile8" and the existing data files should be used as templates. It is
not necessary to recompile the normalization code after addition of datafiles. Simply reinvoke the
initialization function from the calling application.

5.7 Datafile Format.

The entries in datafile0 and datafile1 are listed in the following format:

CUR OTHER IN/ RPC/ MESSAGE INPUT OUTPUT
BFA BFA OUT MSG NUMBER TYPE TYPE
Example:

CMP SUM VER. 1.0/1.1
2/20/97

A - 30

MCS CSSCS IN RPC S501 MGRS LAT_LONG

The CURRENT BFA is the one running the normalization server.

The OTHER BFA is the one that will be a recipient of an outgoing message or the sender of an
incoming message.

The IN/OUT column is used to indicate whether the conversion applies to inbound data (to be
databased) or outbound data (for autofill).

The RPC/MSG column indicates whether the medium for transferring the data is Remote
Procedure Call (RPC) or via USMTF/ATCCS messages.

The MESSAGE NUMBER is used to further refine the type of conversion to be applied to the
data.

The INPUT type column indicates what the input geometric type to the normalization routine will
be.

The OUTPUT type is the desired returned type.

NOTE: The only valid input and output types for geometric conversions are: MGRS,
LAT_LONG, and EAST_NORTH. MGRS is in format CCRSsEEEENNNN where CC is grid
zone column, R is grid zone row, S is UTM 100,000 meter sq. column, s is UTM 100,000 meter
sq. row, EEEE is UTM 10 meter easting, NNNN is UTM 10 meter northing.

EAST_NORTH is one meter Easting and Northing, and LAT_LONG is latitude and longitude.

The entry NA may be used in any column (except INPUT and OUTPUT) to indicate that the
input and output pair applies to any entry in the corresponding column.

The CURRENT BFA entry must start in the first column, i.e., no additional spaces before it. To
insert a comment, begin the line with '##'.

For time conversions, the only valid entries for input and output type are DTG and
SECS
The other data files, datafile2 through datafile7, contain entire lookup tables. All of the columns
are the same as the time and geometric conversion data files except the INPUT and OUTPUT
columns. The INPUTS column indicates the input string to the normalization function. The
OUTPUT column indicates the corresponding output string for the given input string.

CMP SUM VER. 1.0/1.1
2/20/97

 B- 1

APPENDIX B
MESSAGE DATA TABLES

1. SCOPE

This appendix defines the various message standards supported by CMP and provides a listing of
currently available tables.

1.1 MESSAGE GENERATION DATA TABLES :

Directory of data tables : /h/DTJMPS/data

FILE NAME NUMBER OF
MESSAGES

DESCRIPTION OF
MESSAGES

gold/ 18 Msgs : OTH GOLD
mts/ 140 Msgs : MTS VMF
tf21/ 44 Msgs : 9 ACCS, 11 JOINT USMTF.93, 1

NATO 5 CSSCS, 5 VMF, 8 NBC,
5 MISC

tf21-vmf/ 113 Msgs 39 TF21 & 74 USA VMF
usmtf93/ 248 Msgs : JOINT USMTF.93
usmtf95/ 284 Msgs : JOINT USMTF.95
usmtf95-vmf/ 358 Msgs : 284 JOINT USMTF.95, 74 USA

VMF
usmtf97/ 297 Msgs : JOINT USMTF 97
vmf/ 74 Msgs : 74 USA VMF

Each of the above directories will contain the following binary files :

cod.i, frn.i, frndx.i, des.i, exp.i, hlp.i, msg.i msgndx.i, set.i, setndx.i, std.s, usmtf.db

1.2 MESSAGE PARSER DATA TABLES :

Directory of data tables : /h/DTJMAPS/data

FILE NAME NUMBER OF
MESSAGES

DESCRIPTION OF
MESSAGES

CMP SUM VER. 1.0/1.1
2/20/97

 B- 2

jgold/ 8 Msgs OTH GOLD
jmts/ 140 Msgs : MTS VMF9 ACCS,
jtf21/ 44 Msgs 11 JOINT USMTF.93, 1 NATO 5

CSSCS, 5 VMF, 8 NBC, 5 MISC
jtf21-vmf/ 113 Msgs 39 TF21 & 74 USA VMF
jusmtf93/ 248 Msgs : JOINT USMTF.93
jusmtf95 284 Msgs JOINT USMTF.95
jusmtf95-vmf/ 358 Msgs 284 JOINT USMTF.95, 74 USA

VMF
jusmtf97/ 297 Msgs JOINT USMTF 97
jvmf/ 74 Msgs 74 USA VMF

Each of the above directories will contain the following binary files :

mtfcod.i, mtffrn.i, mtffrndx.i, mtfdes.i, mtfexp.i, mtfhlp.i, mtfmsg.i mtfmsgndx.i, mtfset.i,
mtfsetndx.i, std.s, usmtf.db

The 16 object validation tables are grouped into two directories, 8 in the /h/DTJMPS/data
directory for the message generation modules and 8 in the /h/DTJMAPS/data directory for
message parsing. To select the appropriate message table of interest the system operator must edit
the CMP configuration files.

The procedure for JMAPS is :

a. cd /h/JMAPS/Scripts

b. Edit configuration file vi .MAPSconfig

c. change DTAB.dir entry path to /h/DTJMAPS/data created_jmaps_object_tables

d. Save .MAPSconfig

The procedure for JMPS is :

a. cd /h/JMPS/lib

b. Edit configuration file jmps.ini

c. Change DTABS.dir entry path to /h/DTJMPS/data created_jmps_object_tables

CMP SUM VER. 1.0/1.1
2/20/97

 B- 3

d. Save jmps.ini

